Microcalcifications are an early mammographic sign of breast cancer and a target for stereotactic breast needle biopsy. Here, we develop and compare different approaches for developing Raman classification algorithms to diagnose invasive and in situ breast cancer, fibrocystic change and fibroadenoma that can be associated with microcalcifications. In this study, Raman spectra were acquired from tissue cores obtained from fresh breast biopsies and analyzed using a constituent-based breast model. Diagnostic algorithms based on the breast model fit coefficients were devised using logistic regression, C4.5 decision tree classification, k-nearest neighbor (k -NN) and support vector machine (SVM) analysis, and subjected to leave-one-out cross validation. The best performing algorithm was based on SVM analysis (with radial basis function), which yielded a positive predictive value of 100% and negative predictive value of 96% for cancer diagnosis. Importantly, these results demonstrate that Raman spectroscopy provides adequate diagnostic information for lesion discrimination even in the presence of microcalcifications, which to the best of our knowledge has not been previously reported.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4094342 | PMC |
http://dx.doi.org/10.1002/jbio.201200098 | DOI Listing |
Vopr Virusol
December 2024
Smorodintsev Research Institute of Influenza, Ministry of Health of Russian Federation.
Introduction: Omsk hemorrhagic fever (OHF) is a severe disease identified in the 1940s in Western Siberia, Russia. Disease is caused by the OHF virus, which belongs to the genus . The purpose of the work.
View Article and Find Full Text PDFInterdiscip Sci
January 2025
Institute for Complexity Science, Henan University of Technology, Zhengzhou, 450001, China.
Artificial intelligence technology has demonstrated remarkable diagnostic efficacy in modern biomedical image analysis. However, the practical application of artificial intelligence is significantly limited by the presence of similar pathologies among different diseases and the diversity of pathologies within the same disease. To address this issue, this paper proposes a reinforced collaborative-competitive representation classification (RCCRC) method.
View Article and Find Full Text PDFRev Sci Instrum
January 2025
Shenyang Bluewisdom Technology Co., Ltd., Shenyang, Liaoning Province 110623, China.
Existing lower limb exoskeletons (LLEs) have demonstrated a lack of sufficient patient involvement during rehabilitation training. To address this issue and better incorporate the patient's motion intentions, this paper proposes an online brain-computer interface (BCI) system for LLE based motor imagery and stacked ensemble. The establishment of this online BCI system enables a comprehensive closed-loop control process, which includes the collection and decoding of brain signals, robotic control, and real-time feedback mechanisms.
View Article and Find Full Text PDFActa Otolaryngol
January 2025
Laboratory of Otoneurology British Hospital, Montevideo, Uruguay.
Background: Gait instability and falls significantly impact life quality and morbi-mortality in elderly populations. Early diagnosis of gait disorders is one of the most effective approaches to minimize severe injuries.
Objective: To find a gait instability pattern in older adults through an image representation of data collected by a single sensor.
Protein Sci
February 2025
Department of Biostatistics and Bioinformatics, Institute of Health Sciences, Acibadem University, Atasehir, Istanbul, Turkey.
Protein structure holds immense potential for pathogenicity prediction, albeit structure-based predictors are limited compared to the sequence-based counterparts due to the "structure knowledge gap" between large number of available protein sequences and relatively limited number of structures. Leveraging the highly accurate protein structures predicted by AlphaFold2 (AF2), we introduce AFFIPred, an ensemble machine learning classifier that combines sequence and AF2-based structural characteristics to predict missense variant pathogenicity. Based on the assessments on unseen datasets, AFFIPred reached a comparable level of performance with the state-of-the-art predictors such as AlphaMissense.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!