Full-quantum mechanical fragment molecular orbital-based molecular dynamics (FMO-MD) simulations were applied to the hydration reaction of formaldehyde in water solution under neutral conditions. Two mechanisms, a concerted and a stepwise one, were considered with respect to the nucleophilic addition and the proton transfer. Preliminary molecular orbital calculations by means of polarized continuum model reaction field predicted that the hydration prefers a concerted mechanism. Because the calculated activation barriers were too high for free FMO-MD simulations to give reactive trajectories spontaneously, a More O'Ferrall-Jencks-type diagram was constructed from the statistical analysis of the FMO-MD simulations with constraint dynamics. The diagram showed that the hydration proceeds through a zwitterionic-like (ZW-like) structure. The free energy changes along the reaction coordinate calculated by means of the blue moon ensemble for the hydration and the amination of formaldehyde indicated that the hydration proceeds through a concerted process through the ZW-like structure, whereas the amination goes through a stepwise mechanism with a ZW intermediate. In inspection of the FMO-MD trajectories, water-mediated cyclic proton transfers were observed in both reactions on the way from the ZW-like structure to the product. These proton transfers also have an asynchronous character, in which deprotonation from the nucleophilic oxygen atom (or nitrogen atom for amination) precedes the protonation of the carbonyl oxygen atom. The results showed the strong advantage of the FMO-MD simulations to obtain detailed information at a molecular level for solution reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201200874 | DOI Listing |
J Phys Chem Lett
February 2022
Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan.
A decomposition of the free energy is developed in the many-body expansion framework of the fragment molecular orbital (FMO) method combined with umbrella sampling molecular dynamics (MD). In FMO/MD simulations, performed with density-functional tight-binding and periodic boundary conditions, all atoms are treated quantum mechanically. The free energy is computed and decomposed for a series of S2 Menshutkin reactions in water.
View Article and Find Full Text PDFJ Chem Theory Comput
December 2012
Department of Chemistry and Ames Laboratory, Iowa State University, Ames, Iowa 50011, United States.
Fragment molecular orbital molecular dynamics (FMO-MD) with periodic boundary conditions is performed on liquid water using the analytic energy gradient, the electrostatic potential point charge approximation, and the electrostatic dimer approximation. Compared to previous FMO-MD simulations of water that used an approximate energy gradient, inclusion of the response terms to provide a fully analytic energy gradient results in better energy conservation in the NVE ensemble for liquid water. An FMO-MD simulation that includes the fully analytic energy gradient and two body corrections (FMO2) gives improved energy conservation compared with a previously calculated FMO-MD simulation with an approximate energy gradient and including up to three body corrections (FMO3).
View Article and Find Full Text PDFChemistry
July 2012
Department of Chemistry, Rikkyo University, Toshima-ku, Tokyo 171-8501, Japan.
Full-quantum mechanical fragment molecular orbital-based molecular dynamics (FMO-MD) simulations were applied to the hydration reaction of formaldehyde in water solution under neutral conditions. Two mechanisms, a concerted and a stepwise one, were considered with respect to the nucleophilic addition and the proton transfer. Preliminary molecular orbital calculations by means of polarized continuum model reaction field predicted that the hydration prefers a concerted mechanism.
View Article and Find Full Text PDFJ Comput Chem
January 2009
CREST Project, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan.
Fragment Molecular Orbital based-Molecular Dynamics (FMO-MD, Komeiji et al., Chem Phys Lett 2003, 372, 342) is an ab initio MD method suitable for large molecular systems. Here, FMO-MD was implemented to conduct full quantum simulations of chemical reactions in explicit solvation.
View Article and Find Full Text PDFComput Biol Chem
April 2004
National Institute of Advanced Industrial Science and Technology, AIST Tsukuba Central 2, Japan.
A program package for molecular simulations of biological molecules was developed. The package, "PEACH version 4 with ABINIT-MP version 20021029," was constructed by incorporating ABINIT-MP, a program for the fragment molecular orbital (FMO) method [Chem.Phys.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!