The human immunodeficiency virus type 1 (HIV-1) nucleocapsid (NC) protein plays an essential role in several stages of HIV-1 replication. One important function of HIV-1 NC is to act as a nucleic acid chaperone, in which the protein facilitates nucleic acid rearrangements important for reverse transcription and recombination. NC contains only 55 amino acids, with 15 basic residues and two zinc fingers, each having a single aromatic residue (Phe16 and Trp37). Despite its simple structure, HIV-1 NC appears to have optimal chaperone activity, including the ability to strongly aggregate nucleic acids, destabilize nucleic acid secondary structure, and facilitate rapid nucleic acid annealing. Here we combine single molecule DNA stretching experiments with ensemble solution studies of protein-nucleic acid binding affinity, oligonucleotide annealing, and nucleic acid aggregation to measure the characteristics of wild-type (WT) and aromatic residue mutants of HIV-1 NC that are important for nucleic acid chaperone activity. These in vitro results are compared to in vivo HIV-1 replication for viruses containing the same mutations. This work allows us to directly relate HIV-1 NC structure with its function as a nucleic acid chaperone in vitro and in vivo. We show that replacement of either aromatic residue with another aromatic residue results in a protein that strongly resembles WT NC. In contrast, single amino acid substitutions of either Phe16Ala or Trp37Ala significantly slow down NC's DNA interaction kinetics, while retaining some helix-destabilization capability. A double Phe16Ala/Trp37Ala substitution further reduces the latter activity. Surprisingly, the ensemble nucleic acid binding, annealing, and aggregation properties are not significantly altered for any mutant except the double aromatic substitution with Ala. Thus, elimination of a single aromatic residue from either zinc finger strongly reduces NC's chaperone activity as determined by single molecule DNA stretching experiments without significantly altering its ensemble-averaged biochemical properties. Importantly, the substitution of aromatic residues with Ala progressively decreases NC's nucleic acid chaperone activity while also progressively inhibiting viral replication. Taken together, these data support the critical role of HIV-1 NC's aromatic residues, and establish a direct and statistically significant correlation between nucleic acid chaperone activity and viral replication.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3745225PMC
http://dx.doi.org/10.1016/j.virusres.2012.07.008DOI Listing

Publication Analysis

Top Keywords

nucleic acid
44
aromatic residue
24
acid chaperone
24
chaperone activity
24
acid
13
nucleic
12
aromatic
9
hiv-1
9
hiv-1 nucleocapsid
8
chaperone
8

Similar Publications

Exploring markers in nursing care of prostate cancer.

Medicine (Baltimore)

January 2025

Urology and Metabolic Rehabilitation Center, Beijing Rehabilitation Hospital, Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Prostate cancer is epithelial malignant prostate hyperplasia caused by a tumor. We found prostate cancer GSE141551 and GSE200879 profiles from gene expression omnibus database, followed by differentially expressed genes (DEGs) analysis, weighted gene co-expression network analysis, protein-protein interaction analysis, gene function enrichment analysis, and comparative toxicology database analysis. Finally, the gene expression heat map was drawn, and miRNA information regulating core DEGs was retrieved.

View Article and Find Full Text PDF

The roles of STAT1, CASP8, and MYD88 in the care of ischemic stroke.

Medicine (Baltimore)

January 2025

Nerve Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixia Zhuang, Badachu, Shijingshan District, Beijing, China.

Ischemic stroke is caused by blockage of blood vessels in brain, affecting normal function. The roles of Signal Transformer and Activator of Transcription 1 (STAT1), CASP8, and MYD88 in ischemic stroke and its care are unclear. The ischemic stroke datasets GSE16561 and GSE180470 were found from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Background: Recently, microRNAs (miRNAs) have been applied as biomarkers for diffuse large B-cell lymphoma (DLBCL) patients. Early diagnosis and management of DLBCL can improve patient survival and prognosis.

Aims: This systematic review and meta-analysis aimed to evaluate the diagnostic and prognostic accuracy of miRNA biomarkers in DLBCL patients.

View Article and Find Full Text PDF

The cation-proton antiporter (CPA) superfamily plays pivotal roles in regulating cellular ion and pH homeostasis in plants. To date, the regulatory functions of CPA family members in rice (Oryza sativa L.) have not been elucidated.

View Article and Find Full Text PDF

Glucocorticosteroids remain the most common pharmaceutical approach for the treatment of equine asthma but can be associated with significant side effects, including respiratory microbiome alterations. The goal of the study was to assess the impact of 2% lidocaine nebulization, a projected alternative treatment of equine asthma, on the healthy equine respiratory microbiota. A prospective, randomized, controlled, blinded, 2-way crossover study was performed, to assess the effect of 1 mg/kg 2% lidocaine (7 treatments over 4 days) on the equine respiratory microbiota compared to control horses (saline and no treatment).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!