Study Design: Experimental study in male Wistar rats.
Objective: To quantify temporal and spatial changes simultaneously in spinal cord blood flow and hemorrhage during the first hour after spinal cord injury (SCI), using contrast-enhanced ultrasonography (CEU).
Summary Of Background Data: Post-traumatic ischemia and hemorrhage worsen the primary lesions induced by SCI. Previous studies did not simultaneously assess temporal and spatial changes in spinal cord blood flow.
Methods: SCI was induced at Th10 in 12 animals, which were compared with 11 sham-operated controls. Spinal cord blood flow was measured in 7 adjacent regions of interest and in the sum of these 7 regions. Blood flow was quantified using CEU with intravenous microbubble injection. Spinal cord hemorrhage was measured on conventional B-mode sonogram slices.
Results: CEU allowed us to measure the temporal and spatial changes in spinal cord blood flow in both groups. In the SCI group, spinal cord blood flow was significantly decreased in the global region of interest (P = 0.0016), at the impact site (epicenter), and in the 4 regions surrounding the epicenter, compared with the sham group. The blood flow decrease was maximum at the epicenter. No statistically significant differences between the sham groups were found for the most rostral and caudal regions of interest. Hemorrhage size increased significantly with time (P < 0.0001), from 30.3 mm(2) (±2) after 5 minutes to 39.6 mm(2) (±2.3) after 60 minutes.
Conclusion: CEU seems reliable for quantifying temporal and spatial changes in spinal cord blood flow. After SCI, bleeding occurs in the spinal cord parenchyma and increases significantly throughout the first hour.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/BRS.0b013e318269790f | DOI Listing |
Sci Rep
December 2024
Department of Orthopedics, The Second Affiliated hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, China.
The DNA cross-link repair 1B (DCLRE1B) gene is involved in repairing cross-links between DNA strands, including those associated with Hoyeraal-Hreidarsson syndrome and congenital dyskeratosis. However, its role in tumours is not well understood. DCLRE1B expression profiles were examined in tumour tissues and normal tissues using TCGA, GTEx, and TARGET datasets.
View Article and Find Full Text PDFNat Commun
December 2024
Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown.
View Article and Find Full Text PDFNat Commun
December 2024
Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, k) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Biochemistry, McGill University, Montreal, QC, Canada.
Proteostasis is maintained through regulated protein synthesis and degradation and chaperone-assisted protein folding. However, this is challenging in neuronal projections because of their polarized morphology and constant synaptic proteome remodeling. Using high-resolution fluorescence microscopy, we discover that hippocampal and spinal cord motor neurons of mouse and human origin localize a subset of chaperone mRNAs to their dendrites and use microtubule-based transport to increase this asymmetric localization following proteotoxic stress.
View Article and Find Full Text PDFNat Commun
December 2024
College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
Delivering protein drugs to the central nervous system (CNS) is challenging due to the blood-brain and blood-spinal cord barrier. Here we show that neutrophils, which naturally migrate through these barriers to inflamed CNS sites and release neutrophil extracellular traps (NETs), can be leveraged for therapeutic delivery. Tannic acid nanoparticles tethered with anti-Ly6G antibody and interferon-β (aLy6G-IFNβ@TLP) are constructed for targeted neutrophil delivery.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!