Damage to the structural connections of the thalamus is a frequent feature of traumatic brain injury (TBI) and can be a key factor in determining clinical outcome. Until recently it has been difficult to quantify the extent of this damage in vivo. Diffusion tensor imaging (DTI) provides a validated method to investigate traumatic axonal injury, and can be applied to quantify damage to thalamic connections. DTI can also be used to assess white matter tract structure using tractography, and this technique has been used to study thalamo-cortical connections in the healthy brain. However, the presence of white matter injury can cause failure of tractography algorithms. Here, we report a method for investigating thalamo-cortical connectivity that bypasses the need for individual tractography. We first created a template for a number of thalamo-cortical connections using probabilistic tractography performed in ten healthy subjects. This template for investigating white matter structure was validated by comparison with individual tractography in the same group, as well as in an independent control group (N=11). We also evaluated two methods of masking tract location using the tract skeleton generated by tract based spatial statistics, and a cerebrospinal fluid mask. Voxel-wise estimates of fractional anisotropy derived from the template were more strongly correlated with individual tractography when both types of masking were used. The tract templates were then used to sample DTI measures from a group of TBI patients (N=22), with direct comparison performed against probabilistic tractography in individual patients. Probabilistic tractography often failed to produce anatomically plausible tracts in TBI patients. Importantly, we show that this problem increases as tracts become more damaged, and leads to underestimation of the amount of traumatic axonal injury. In contrast, the tract template can be used in these cases, allowing a more accurate assessment of white matter damage. In summary, we propose a method suitable for assessing specific thalamo-cortical white matter connections after TBI that is robust to the presence of varying amounts of traumatic axonal injury, as well as highlighting the potential problems of applying tractography algorithms in patient populations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3471070 | PMC |
http://dx.doi.org/10.1016/j.neuroimage.2012.07.016 | DOI Listing |
Ann Neurol
January 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Objective: The aim of this study was to explore the microstructural dynamics of the subventricular zone (SVZ) with aging and their associations with clinical disability and brain structural damage in pediatric-onset multiple sclerosis (MS) patients.
Methods: One-hundred and forty-one pediatric-onset MS patients (67 pediatric and 74 adults with pediatric-onset) and 233 healthy controls (HC) underwent neurological and 3.0 T MRI assessment.
Magn Reson Med
January 2025
Université Grenoble Alpes, INSERM, U1216, Grenoble Institute Neurosciences, GIN, Grenoble, France.
Purpose: This study proposes a novel, contrast-free Magnetic Resonance Fingerprinting (MRF) method using balanced Steady-State Free Precession (bSSFP) sequences for the quantification of cerebral blood volume (CBV), vessel radius (R), and relaxometry parameters (T , T , T *) in the brain.
Methods: The technique leverages the sensitivity of bSSFP sequences to intra-voxel frequency distributions in both transient and steady-state regimes. A dictionary-matching process is employed, using simulations of realistic mouse microvascular networks to generate the MRF dictionary.
Cogn Affect Behav Neurosci
January 2025
Departamento de Psicología ClínicaPsicobiología y MetodologíaFacultad de Psicología, Universidad de La Laguna, 38200, La Laguna, Tenerife, Spain.
Z Med Phys
January 2025
Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland; Department of Radiology, Division of Radiological Physics, University Hospital Basel, Basel, Switzerland.
Purpose: This study aims to evaluate the feasibility of structural sub-millimeter isotropic brain MRI at 0.55 T using a 3D half-radial dual-echo balanced steady-state free precession sequence, termed bSTAR and to assess its potential for high-resolution magnetization transfer imaging.
Methods: Phantom and in-vivo imaging of three healthy volunteers was performed on a low-field 0.
Cell Rep
January 2025
Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada; Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada. Electronic address:
Here, we used single cell RNA sequencing and single cell spatial transcriptomics to characterize the forebrain neural stem cell (NSC) niche under homeostatic and injury conditions. We defined the dorsal and lateral ventricular-subventricular zones (V-SVZs) as two distinct neighborhoods and showed that, after white matter injury, NSCs are activated to make oligodendrocytes dorsally for remyelination. This activation is coincident with an increase in transcriptionally distinct microglia in the dorsal V-SVZ niche.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!