It has been suggested that interjoint coordination may serve to reduce joint stress and muscular demand and to maintain balance during dynamic lifting tasks, thus having implications for safe lifting practices. Before recommending the use of an on-body ergonomic aid, the Personal Lift-Assist Device (PLAD), it is important to determine any effects this device may have on interjoint coordination. Principal component analyses were applied to relative phase angle waveforms, defining the hip-knee and lumbar spine-hip coordination of 15 males and 15 females during a repetitive lifting task. When wearing the PLAD, users lifted with more synchronous hip-knee and lumbar spine-hip coordination patterns (P < .01). Furthermore, increases in load caused less synchronized interjoint coordination at both the hip-knee and lumbar spine-hip during the up and down phases of the lift (P < .01) for all conditions. No significant main effects of sex or significant interactions were observed on any of the outcome variables.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1123/jab.29.2.194 | DOI Listing |
J Neuroeng Rehabil
December 2024
Institute of Occupational Therapy, ZHAW School of Health Sciences, Winterthur, Switzerland.
Background: Compensatory movements frequently emerge in the process of motor recovery after a stroke. Given their potential for unfavorable long-term effects, it is crucial to assess and document compensatory movements throughout rehabilitation. However, clinically applicable assessment tools are currently limited.
View Article and Find Full Text PDFCompr Physiol
December 2024
School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.
The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances.
View Article and Find Full Text PDFJ Biomech
November 2024
Human Motion Diagnostic Centre, University of Ostrava, Ostrava, Czech Republic; Biomechanics Laboratory, University of Massachusetts, Amherst, MA, USA. Electronic address:
Understanding the intricacies of human movement coordination and variability during running is crucial to unraveling the dynamics of locomotion, identifying potential injury mechanisms and understanding skill development. Identification of minimum number of cycles for calculation of reliable coordination and its variability could help with better test organization and efficient assessment time. By adopting a cross-sectional study design, this study investigated the minimum required cycles for calculating hip-knee, hip-ankle and knee-ankle coordination and their variability using a continuous relative phase (CRP) method.
View Article and Find Full Text PDFGait Posture
October 2024
Faculty of Sports Science, Ningbo University, Ningbo, China; Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Research Academy of Medicine Combining Sports, Ningbo NO.2 Hospital, Ningbo, China. Electronic address:
Gait Posture
October 2024
Institute of Human Factors and Ergonomics, Shenzhen University, China. Electronic address:
Background: Trips are one of the most common external perturbations that can lead to accidental falls. Knowledge about postural control attributes of balance recovery after trips could help reveal the biomechanical causes for trip-induced falls and provide implications for fall prevention interventions.
Research Question: The objective of the present study was to examine coordinated lower-limb movements during balance recovery after trips.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!