Browsed twig environmental DNA: diagnostic PCR to identify ungulate species.

Mol Ecol Resour

Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, Umeå, Sweden.

Published: November 2012

Ungulate browsing can have a strong effect on ecological processes by affecting plant community structure and composition, with cascading effects on nutrient cycling and animal communities. However, in the absence of direct observations of foraging, species-specific foraging behaviours are difficult to quantify. We therefore know relatively little about foraging competition and species-specific browsing patterns in systems with several browsers. However, during browsing, a small amount of saliva containing buccal cells is deposited at the bite site, providing a source of environmental DNA (eDNA) that can be used for species identification. Here, we describe extraction and PCR protocols for a browser species diagnostic kit. Species-specific primers for mitochondrial DNA were optimized and validated using twigs browsed by captive animals. A time series showed that about 50% of the samples will amplify up to 12 weeks after the browsing event and that some samples amplify up to 24 weeks after browsing (12.5%). Applied to samples of natural browsing from an area where moose (Alces alces), roe deer (Capreolus capreolus), fallow deer (Cervus dama) and red deer (Cervus elaphus) are sympatric, amplification success reached 75%. This method promises to greatly improve our understanding of multispecies browsing systems without the need for direct observations.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1755-0998.2012.03172.xDOI Listing

Publication Analysis

Top Keywords

environmental dna
8
direct observations
8
amplify weeks
8
weeks browsing
8
deer cervus
8
browsing
7
browsed twig
4
twig environmental
4
dna diagnostic
4
diagnostic pcr
4

Similar Publications

Characterizing biodiversity using environmental DNA (eDNA) represents a paradigm shift in our capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA biomonitoring is limited by biases toward certain species and the low taxonomic resolution of current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole ecosystem data by sequencing all molecules present, allowing characterization and identification.

View Article and Find Full Text PDF

Tgt is the enzyme modifying the guanine (G) in tRNAs with GUN anticodon to queuosine (Q). is required for optimal growth of in the presence of sub-lethal aminoglycoside concentrations. We further explored here the role of the Q34 in the efficiency of codon decoding upon tobramycin exposure.

View Article and Find Full Text PDF

Emerging mercury-free ultraviolet (UV) sources, such as krypton chloride excimer (KrCl*) lamps and UV light emitting diodes (UV-LEDs), emit diverse wavelengths with distinct inactivation mechanisms. The combined application has the potential to improve disinfection effectiveness through synergism. In this study, a mini-fluidic photoreaction system equipped with a KrCl* lamp (222 nm) and a strip of UV-LEDs (275 nm) was developed, which could individually/simultaneously deliver accurate UV radiation(s) at 222 nm (0.

View Article and Find Full Text PDF

Innovations in Transgene Integration Analysis: A Comprehensive Review of Enrichment and Sequencing Strategies in Biotechnology.

ACS Appl Mater Interfaces

January 2025

Joint International Research Laboratory of Metabolic and Developmental Sciences, Yazhou Bay Institute of Deepsea Sci-Tech, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.

Understanding the integration of transgene DNA (T-DNA) in transgenic crops, animals, and clinical applications is paramount for ensuring the stability and expression of inserted genes, which directly influence desired traits and therapeutic outcomes. Analyzing T-DNA integration patterns is essential for identifying potential unintended effects and evaluating the safety and environmental implications of genetically modified organisms (GMOs). This knowledge is crucial for regulatory compliance and fostering public trust in biotechnology by demonstrating transparency in genetic modifications.

View Article and Find Full Text PDF

Coastal fish populations are threatened by multiple anthropogenic impacts, including the accumulation of industrial contaminants and the increasing frequency of hypoxia. Some populations of the Atlantic killifish (Fundulus heteroclitus), like those in New Bedford Harbor (NBH), Massachusetts, USA, have evolved a resistance to dioxin-like polychlorinated biphenyls (PCBs) that may influence their ability to cope with secondary stressors. To address this question, we compared hepatic gene expression and DNA methylation patterns in response to mild or severe hypoxia in killifish from NBH and Scorton Creek (SC), a reference population from a relatively pristine environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!