Interferon response factor 3 (IRF-3) is a transcription factor that plays an essential role in controlling the synthesis of interferon-β (IFN-β) and is a protein consisting of two well-defined domains, the N-terminal DNA-binding and the C-terminal dimerization domains, connected by a 75-residue linker, supposedly unfolded. However, it was not clear whether in intact IRF-3 this linker segment of the chain, which carries the nuclear export signal and includes a region of high helical propensity, remains unfolded. This has been investigated using nuclear magnetic resonance by ligating the (15)N-labeled linker to the unlabeled N-terminal and C-terminal domains. It was found that, while the linker alone is indeed in a completely unfolded state, when ligated to the C-terminal domain it shows some ordering, and this ordering becomes much more pronounced when the linker is also ligated to the N-terminal domain. Thus, in intact IRF-3, the linker represents a folded structural domain; i.e., IRF-3 is a three-domain globular protein. Light scattering studies of wild-type IRF-3 showed that these three domains are tightly packed, and therefore, the dimer of IRF-3, which is formed upon phosphorylation of its C-terminal domains following virus invasion, must be a rather rigid and compact construction. One would then expect that binding of such a dimer to its tandem recognition sites PRDIII and PRDI, which are located on opposing faces of the IFN-β enhancer DNA, should result in deformation of the DNA. Analysis of the characteristics of binding of the monomeric and dimeric IRF-3 to the enhancer DNA indeed showed that formation of this complex requires considerable work for deformation of its components, most likely bending of the DNA. Such bending was confirmed by atomic force microscopy of dimeric IRF-3 bound to the PRDII-PRDI tandem recognition sites placed at the middle of a 300 bp DNA probe. Bending of DNA by IRF-3 must be significant in the assembly and function of the IFN-β enhancer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi300260sDOI Listing

Publication Analysis

Top Keywords

irf-3
9
interferon response
8
response factor
8
transcription factor
8
intact irf-3
8
irf-3 linker
8
c-terminal domains
8
tandem recognition
8
recognition sites
8
ifn-β enhancer
8

Similar Publications

Currently, no approved antiviral drugs target dengue virus (DENV) infection, leaving treatment reliant on supportive care. DENV vaccine efficacy varies depending on the vaccine type, the circulating serotype, and vaccine coverage. We investigated defective interfering particles (DIPs) and lipid nanoparticles (LNPs) to deliver DI290, an anti-DENV DI RNA.

View Article and Find Full Text PDF

During virus infection, the activation of the antiviral endoribonuclease, ribonuclease L (RNase L), by a unique ligand 2'-5'-oilgoadenylate (2-5A) causes the cleavage of single-stranded viral and cellular RNA targets, restricting protein synthesis, activating stress response pathways, and promoting cell death to establish broad antiviral effects. The immunostimulatory dsRNA cleavage products of RNase L activity (RL RNAs) recruit diverse dsRNA sensors to activate signaling pathways to amplify interferon (IFN) production and activate inflammasome, but the sensors that promote cell death are not known. In this study, we found that DEAH-box polypeptide 15 (DHX15) and retinoic acid-inducible gene I (Rig-I) are essential for apoptosis induced by RL RNAs and require mitochondrial antiviral signaling (MAVS), c-Jun amino terminal kinase (JNK), and p38 mitogen-activated protein kinase (p38 MAPK) for caspase-3-mediated intrinsic apoptosis.

View Article and Find Full Text PDF

Unlabelled: Di(2-ethhylhexyl) phthalate (DEHP) is a common plastic rubberizer. DEHP leaches from plastic matrices and is under increasing scrutiny as numerous studies have linked it to negative human health manifestations. Coxsackievirus B3 (CVB) is a human pathogen that typically causes subclinical infections but can sometimes cause severe diseases such as pancreatitis, myocarditis, and meningoencephalitis.

View Article and Find Full Text PDF

Anti-herpetic tau preserves neurons via the cGAS-STING-TBK1 pathway in Alzheimer's disease.

Cell Rep

December 2024

School of Pharmacy, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel; Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA. Electronic address:

Alzheimer's disease (AD) diagnosis relies on the presence of extracellular β-amyloid (Aβ) and intracellular hyperphosphorylated tau (p-tau). Emerging evidence suggests a potential link between AD pathologies and infectious agents, with herpes simplex virus 1 (HSV-1) being a leading candidate. Our investigation, using metagenomics, mass spectrometry, western blotting, and decrowding expansion pathology, detects HSV-1-associated proteins in human brain samples.

View Article and Find Full Text PDF
Article Synopsis
  • Fermentation of Astragalus with Lactobacillus plantarum and Bacillus coagulans enhances the release of beneficial components and breaks down large molecules, leading to improved health benefits.
  • The study evaluated the effects of different concentrations of ALB (Astragalus + L. plantarum + B. coagulans) on largemouth bass over 28 days, revealing that the 0.5% ALB group (ALB0.5) had the best outcomes in terms of weight gain, enzyme activity, and overall gut health.
  • Additionally, the ALB0.5 group demonstrated better resistance against infections and improved immune gene expression, suggesting that this specific fermentation product significantly boosts the health and
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!