Momordica charantia (MC; bitter gourd) is a traditional herbal commonly used for its antidiabetic, antioxidant, contraceptive and antibacterial properties. In the current study, the authors aim to observe the topical effect of MC cream on the wound-healing process in rabbits. Moreover, they compare the healing potential with conventional creams used therapeutically. Towards this aim, 28 New Zealand rabbits were divided into four groups and excision wounds (7 cm²) were made on their backs. Open wound dressing was carried out daily for 28 days among the experimental groups with the application of dekspanthenol (Bepanthen®; BP group, n = 7), nitrofurazon (Furacin®; FR group, n = 7) and olive oil extract of MC (MC group, n = 7). No application was made to the control group. At the end of day 28, areas of the skin with initial wound area were en bloc dissected and prepared for histopathological and stereological analysis. Inflammatory cells were abundant in the control group and cream application led to a decrease in the number of these cells, especially in the MC group. The highest number of fibroblasts was detected in the MC group. Furthermore, the MC group displayed the highest fractions of epidermis to papillary dermis, fibroblasts to reticular dermis and collagen fibres to reticular dermis. The MC group also presented a high density of blood vessels, moderate density of collagen fibres and mature fibroblasts. The BP group showed better epithelialisation compared with the FR group, but the latter provided more effective reorganisation of the dermis. Different cream supplements caused healthy and fast wound healing according to untreated controls and the results show that administration of the MC extract improves and accelerates the process of wound healing in rabbits in comparison with the BP and FR extracts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/09546634.2012.713459 | DOI Listing |
Food Chem
January 2025
College of Life Sciences, Dalian Minzu University, Dalian 116600, China; Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian 116600, China. Electronic address:
Int J Biol Macromol
January 2025
School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:
Wound bacterial infections not only impede the healing process but can also give rise to a range of serious complications, thereby posing a substantial risk to human health. Developing effective wound dressings incorporating phototherapy functionalities, specifically photothermal therapy (PTT) and photodynamic therapy (PDT), remains a critical area of research in modern wound care. Existing PTT-PDT systems often suffer from challenges such as nanoparticle aggregation and inefficient reactive oxygen species (ROS) generation, which are essential for therapeutic efficacy.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China. Electronic address:
Bacterial infections and excessive accumulation of wound exudates remain the main obstacles and clinical challenges to the healing of chronic cutaneous wounds. Conventional dressings are commonly used medical materials for acute wound care, but they do not possess the bacterial infection resistance required for chronic wound treatment. Herein, we prepared pure chitosan nanofibrous membranes (C) by electrospinning with poly(ethylene oxide) (PEO) as a sacrificial additive and then loaded with zinc-based metal-organic framework (MOF) as a novel antimicrobial wound dressing.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Urology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Urology, Chaohu Hospital of Anhui Medical University, Chaohu 238000, China. Electronic address:
Inorganic arsenic is a Class I human Carcinogen. However, the role of chronic inorganic arsenic exposure on prostate cancer metastasis still unclear. This study aimed to investigate the effects and mechanism of chronic NaAsO exposure on migration and invasion of prostate cancer cells.
View Article and Find Full Text PDFBackground: Acne is an inflammatory skin disease afflicting the majority of the world's population at some point in their lifetime, and is seen to be chronic in about 50% of cases. Acne leads to significant social withdrawal, depression, and disfiguring scars in many cases. Available treatments are characterized by high rates of relapse, dangerous side effects, and social stigma, which often leads to poor patient compliance and treatment failure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!