Several applications such as multiprojector displays and microscopy require the mosaicing of images (tiles) acquired by a camera as it traverses an unknown trajectory in 3D space. A homography relates the image coordinates of a point in each tile to those of a reference tile provided the 3D scene is planar. Our approach in such applications is to first perform pairwise alignment of the tiles that have imaged common regions in order to recover a homography relating the tile pair. We then find the global set of homographies relating each individual tile to a reference tile such that the homographies relating all tile pairs are kept as consistent as possible. Using these global homographies, one can generate a mosaic of the entire scene. We derive a general analytical solution for the global homographies by representing the pair-wise homographies on a connectivity graph. Our solution can accommodate imprecise prior information regarding the global homographies whenever such information is available. We also derive equations for the special case of translation estimation of an X-Y microscopy stage used in histology imaging and present examples of stitched microscopy slices of specimens obtained after radical prostatectomy or prostate biopsy. In addition, we demonstrate the superiority of our approach over tree-structured approaches for global error minimization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3312714 | PMC |
http://dx.doi.org/10.4103/2153-3539.92039 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!