The protein tyrosine phosphatase PTP1B is a negative regulator of both insulin and leptin signaling and is involved in the control of glucose homeostasis and energy expenditure. Due to its prominent role in regulating metabolism, PTP1B is a promising therapeutic target for the treatment of human obesity and type 2 diabetes. The PTP1B protein is encoded by the PTPN1 gene on human chromosome 20q13, a region that shows linkage with insulin resistance, type 2 diabetes, and obesity in human populations. In this paper, we summarize the genetics of the PTPN1 locus and associations with metabolic disease. In addition, we discuss the tissue-specific functions of PTP1B as gleaned from genetic mouse models.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3395189 | PMC |
http://dx.doi.org/10.1155/2012/926857 | DOI Listing |
Protein Sci
January 2025
Department of Chemistry, Columbia University, New York, New York, USA.
The rapid identification of protein-protein interactions has been significantly enabled by mass spectrometry (MS) proteomics-based methods, including affinity purification-MS, crosslinking-MS, and proximity-labeling proteomics. While these methods can reveal networks of interacting proteins, they cannot reveal how specific protein-protein interactions alter protein function or cell signaling. For instance, when two proteins interact, there can be emergent signaling processes driven purely by the individual activities of those proteins being co-localized.
View Article and Find Full Text PDFCNS Neurosci Ther
November 2024
Laboratory of Computational Biology and Machine Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.
Background: Protein tyrosine phosphatase 1B (PTP1B) is a protein tyrosine phosphatase and modulates platelet-derived growth factor (PDGF)/platelet-derived growth factor receptor (PDGFR) signaling in vascular smooth muscle cells (VSMCs) via endocytosis. However, the related molecular pathways that participated in the interaction of endo-lysosome and the trafficking of PDGFR are largely unknown. This study aims to determine the subcellular regulating mechanism of PTP1B to the endo-lysosome degradation of PDGFR in atherosclerotic carotid plaques, thereby offering a potential therapeutic target for the stabilization of carotid plaques.
View Article and Find Full Text PDFJ Extracell Vesicles
November 2024
Department of Orthopedics, Southwest Hospital, Third Military Medical University, Chongqing, China.
The identification of both autophagy-related material degradation and unconventional secretion has paved the way for significant breakthroughs linking autophagy to a plethora of physiological processes and disease conditions. However, the mechanisms that coordinate these two pathways remain elusive. Here, we demonstrate that a switch from the lysosomal degradation to a secretory autophagy pathway is governed by protein tyrosine phosphatase 1B (PTP1B, encoded by PTPN1).
View Article and Find Full Text PDFLife Sci Alliance
January 2025
Department of Biochemistry, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
Duchenne muscular dystrophy (DMD) is a lethal disease caused by mutations in the gene that encodes dystrophin. Dystrophin deficiency also impacts muscle stem cells (MuSCs), resulting in impaired asymmetric stem cell division and myogenic commitment. Using MuSCs from DMD patients and the DMD mouse model , we found that PTPN1 phosphatase expression is up-regulated and STAT3 phosphorylation is concomitantly down-regulated in DMD MuSCs.
View Article and Find Full Text PDFFunct Integr Genomics
October 2024
Department of Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi, 330006, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!