In previous studies, we showed that the tyrosine phosphorylation state of growth factor receptor-bound protein 7 (Grb7) affects its ability to bind to the transcription regulator FHL2 and the cortactin-interacting protein, human HS-1-associated protein-1. Here, we present results describing the importance of dimerization in the Grb7-Src homology 2 (SH2) domain in terms of its structural integrity and the ability to bind phosphorylated tyrosine peptide ligands. A tyrosine phosphorylation-mimic mutant (Y80E-Grb7-SH2) is largely dimerization deficient and binds a tyrosine-phosphorylated peptide representative of the receptor tyrosine kinase (RTK) erbB2 with differing thermodynamic characteristics than the wild-type SH2 domain. Another dimerization-deficient mutant (F99R-Grb7-SH2) binds the phosphorylated erbB2 peptide with similarly changed thermodynamic characteristics. Both Y80E-Grb7-SH2 and F99R-Grb7-SH2 are structured by circular dichroism measurements but show reduced thermal stability relative to the wild type-Grb7-SH2 domain as measured by circular dichroism and nuclear magnetic resonance. It is well known that the dimerization state of RTKs (as binding partners to adaptor proteins such as Grb7) plays an important role in their regulation. Here, we propose the phosphorylation state of Grb7-SH2 domain tyrosine residues could control Grb7 dimerization, and dimerization may be an important regulatory step in Grb7 binding to RTKs such as erbB2. In this manner, additional dimerization-dependent regulation could occur downstream of the membrane-bound kinase in RTK-mediated signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3758474 | PMC |
http://dx.doi.org/10.1002/jmr.2205 | DOI Listing |
Cancers (Basel)
January 2025
Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
Cancer cells must reprogram their metabolism to sustain rapid growth. This is accomplished in part by switching to aerobic glycolysis, uncoupling glucose from mitochondrial metabolism, and performing anaplerosis via alternative carbon sources to replenish intermediates of the tricarboxylic acid (TCA) cycle and sustain oxidative phosphorylation (OXPHOS). While this metabolic program produces adequate biosynthetic intermediates, reducing agents, ATP, and epigenetic remodeling cofactors necessary to sustain growth, it also produces large amounts of byproducts that can generate a hostile tumor microenvironment (TME) characterized by low pH, redox stress, and poor oxygenation.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China.
RAD52 plays crucial roles in several aspects of mammalian cells, including DNA double-strand breaks repair, viral infection, cancer development, and antibody class switching. To comprehensively elucidate the role of RAD52 in maintaining genome stability and uncover additional functions of RAD52 in mammals, we performed the transcriptomics and proteomics analysis of the liver of knockout mice. Transcriptomics analysis reveals overexpression of mitochondrial genes in the liver of knockout (RAD52KO) mice.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Anatomy, Cellular and Molecular Research Group, Faculty of Medicine, Masaryk University, Kamenice 3, CZ-625 00 Brno, Czech Republic.
CXCL12 and CXCR4 proteins and mRNAs were monitored in the dorsal root ganglia (DRGs) of lumbar (L4-L5) and cervical (C7-C8) spinal segments of naïve rats, rats subjected to sham operation, and those undergoing unilateral complete sciatic nerve transection (CSNT) on post-operation day 7 (POD7). Immunohistochemical, Western blot, and RT-PCR analyses revealed bilaterally increased levels of CXCR4 protein and mRNA in both lumbar and cervical DRG neurons after CSNT. Similarly, CXCL12 protein levels increased, and CXCL12 mRNA was upregulated primarily in lumbar DRGs ipsilateral to the nerve lesion.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
Diabetic peripheral neuropathy (DPN) is a common complication of diabetes in both Type 1 (T1D) and Type 2 (T2D). While there are no specific medications to prevent or treat DPN, certain strategies can help halt its progression. In T1D, maintaining tight glycemic control through insulin therapy can effectively prevent or delay the onset of DPN.
View Article and Find Full Text PDFTransl Psychiatry
January 2025
Department of Forensic Pathology, School of Forensic Medicine, China Medical University, Shenyang, Liaoning Province, PR China.
The incidence of neurodegenerative diseases (NDs) has increased recently. However, most of the current governance strategies are palliative and lack effective therapeutic drugs. Therefore, elucidating the pathological mechanism of NDs is the key to the development of targeted drugs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!