Background: Stress affects the responsiveness to nicotine (NIC), by increasing drug use, facilitating relapse and reinstating NIC self administration even after prolonged abstinence. In turn, high corticosterone (CORT) blood levels induced by stress may alter the neurobiological properties of NIC by acting on the dopamine (DA) mesolimbic system.

Methods: In this study, we evaluated the effect of exposure to acute restraint stress on NIC-induced stimulation of the mesolimbic DA system of the rat, by studying extracellular DA levels in the nucleus accumbens shell (NAccs) with microdialysis.

Results: NIC intravenous administration (130 μg/kg) increased DA levels in the NAccs in control rats but not in subjects exposed to stress; this latter phenomenon was prevented by blockade of CORT effects with the inhibitor of corticosterone synthesis metirapone (100 mg/kg) or the glucorticoid receptor antagonist mifepristone (150 μmol/kg).

Conclusions: These observations show that exposure to acute stress inhibits the stimulatory response of the mesolimbic DA system to NIC and suggest that this effect is mediated by circulating CORT acting on its receptors. These results may bear relevance in explaining the role played by stressful stimuli in NIC-seeking and taking behavior.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.drugalcdep.2012.06.006DOI Listing

Publication Analysis

Top Keywords

acute restraint
8
restraint stress
8
exposure acute
8
mesolimbic system
8
stress
6
nic
5
stress prevents
4
prevents nicotine-induced
4
mesolimbic
4
nicotine-induced mesolimbic
4

Similar Publications

Objective: To quantify quality of care following an admission to a nursing home with low or high antipsychotic drug use.

Background: Misuse of antipsychotics in U.S.

View Article and Find Full Text PDF

Cortical spreading depolarization (CSD), a slowly propagating wave of transient cellular depolarization, is a reliable cortical response to various brain insults (stroke, trauma, seizures) and underlying mechanism of migraine aura. Little is known about CSD effects on brain network activity. Using undirected (mutual information, MI) and directed (transfer entropy, TE) measures, we studied the dynamics of cross-hemispheric connectivity associated with the development of unilateral CSD in freely behaving rats and the involvement of inhibitory transmission in mechanisms of the coupling changes.

View Article and Find Full Text PDF

The prevalence of depressive disorders in women has been reported in many countries. However, the cellular mechanisms mediating such sex differences in stress susceptibility remain largely unknown. Previously, we showed that lateral habenula (LHb) neurons are more activated in female mice than in male mice by restraint stress.

View Article and Find Full Text PDF

Effects of Acute Stress on Metabolic Interactions Related to the Tricarboxylic Acid (TCA) Cycle in the Left Hippocampus of Mice.

Metabolites

December 2024

Department of Radiation Convergence Engineering, College of Software and Digital Healthcare Convergence, Yonsei University, 1, Yeonsedae-gil, Heungeop-myeon, Wonju 26493, Republic of Korea.

Background/objectives: The acute stress response affects brain metabolites closely linked to the tricarboxylic acid (TCA) cycle. This response involves time-dependent changes in hormones and neurotransmitters, which contribute to resilience and the ability to adapt to acute stress while maintaining homeostasis. This physiological mechanism of metabolic dynamics, combined with time-series analysis, has prompted the development of new methods to observe the relationship between TCA cycle-related brain metabolites.

View Article and Find Full Text PDF

: Clinical findings have shown a negative correlation between the severity of depressive symptoms and serum uric acid levels in men, yet the role of metabolic regulation in the pathophysiology of depression remains largely unknown. : In this study, we utilized an acute restraint-stress-induced male rat model of depression to investigate biochemical changes through NMR-based metabolomics combined with serum biochemical analysis. Additionally, we employed qPCR, immunoblotting, and enzyme activity assays to assess the expression and activity of xanthine oxidoreductase, the rate-limiting enzyme in uric acid production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!