Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many of the chemical and biological effects of silver nanoparticles (Ag NPs) are attributed to the generation of reactive oxygen species (ROS). ESR spectroscopy was used to provide direct evidence for generating ROS during decomposition of H(2)O(2) assisted by Ag NPs. Hydroxyl radical formation was observed under acidic conditions and was accompanied by dissolution of Ag NPs. In contrast, evolution of O(2) was observed in alkaline solutions containing H(2)O(2) and Ag NPs; however, no net dissolution of Ag NPs was observed due to re-reduction of Ag(+) as evidenced by a cyclic reaction. Since H(2)O(2) is a biologically relevant product being continuously generated in cells, these results obtained under conditions mimicking different biological microenvironments may provide insights for finding new biomedical applications for Ag NPs and for risk assessment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2012.06.076 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!