X-ray crystallography has been a useful tool in the development of site-directed spin labeling by resolving rotamers of the nitroxide spin-label side chain in a variety of α-helical environments. In this work, the crystal structure of a doubly spin-labeled N8C/K28C mutant of the B1 immunoglobulin-binding domain of protein G (GB1) was solved. The double mutant formed a domain-swapped dimer under crystallization conditions. Two rotameric states of the spin-label were resolved at the solvent-exposed α-helical site, at residue 28; these are in good agreement with rotamers previously reported for helical structures. The second site, at residue 8 on an interior β-strand, shows the presence of three distinct solvent-exposed side-chain rotamers. One of these rotamers is rarely observed within crystal structures of R1 sites and suggests that the H(α) and S(δ) hydrogen bond that is common to α-helical sites is absent at this interior β-strand residue. Variable temperature continuous wave (CW) experiments of the β-strand site showed two distinct components that were correlated to the rotameric states observed in crystallography. Interestingly, the CW data at room temperature could be fit without the use of an order parameter, which is consistent with the lack of the H(α) and S(δ) interaction. Additionally, double electron electron resonance (DEER) spectroscopy was performed on the GB1 double mutant in its monomeric form and yielded a most probable interspin distance of 25 ± 1 Å. In order to evaluate the accuracy of the measured DEER distance, the rotamers observed in the crystal structure of the domain-swapped GB1 dimer were modeled into a high-resolution structure of the wild type monomeric GB1. The distances generated in the resulting GB1 structural models match the most probable DEER distance within ~2 Å. The results are interesting as they indicate by direct experimental measurement that the rotameric states of R1 found in this crystal provide a very close match to the most probable distance measured by DEER.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi300328w | DOI Listing |
Noncovalent carbon bonding (C-bonding), a recently explored σ-hole interaction, has primarily been characterized through X-ray structural and computational studies. Evidence of C-bonds in solution is scarce, especially in highly polar solvents like DMSO where solvation effects typically overshadow weak non-covalent interactions. In this work, we present three novel spiroisatin-based -acyl hydrazones (1-3) in which C-bonds play a critical role in stabilizing the conformation in solution.
View Article and Find Full Text PDFMagn Reson (Gott)
August 2024
Department of Chemistry, Wesleyan University, Middletown, CT, United States.
Chemistry
January 2025
Department of NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen, Germany.
The currently circulating S31N variant of the M2 proton channel of influenza A is resistant to antiviral drugs. Recently, there has been a growing concern regarding the impact of the lipid environment on the structural features of the S31N variant. The native symmetry of the M2 tetramer remains controversial.
View Article and Find Full Text PDFChemphyschem
January 2025
Institut für Analytische Chemie, Universität Leipzig, 04103, Leipzig, Germany.
The red/green cyanobacteriochrome (CBCR) slr1393g3 exhibits a quantum yield of only 8 % for its forward photoconversion, significantly lower than other species from the same CBCR subfamily. The cause for this reduced photoconversion is not yet clear, although in the related NpR6012g4 dark-state structural heterogeneity of a paramount Trp residue has been proposed to cause the formation of nonproductive subpopulation. However, there is no such information on the equivalent residue in slr1393g3, W496.
View Article and Find Full Text PDFJ Mol Biol
November 2024
Ohio State Biochemistry Graduate Program, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA; Center for RNA Biology, The Ohio State University, 484 W 12th Avenue, Columbus, Ohio 43210, USA. Electronic address:
The 91 kDa oligomeric ring-shaped ligand binding protein TRAP (trp RNA binding attenuation protein) regulates the expression of a series of genes involved in tryptophan (Trp) biosynthesis in bacilli. When cellular Trp levels rise, the free amino acid binds to sites buried in the interfaces between each of the 11 (or 12, depending on the species) protomers in the ring. Crystal structures of Trp-bound TRAP show the Trp ligands are sequestered from solvent by a pair of loops from adjacent protomers that bury the bound ligand via polar contacts to several threonine residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!