An activated by cobalt alkaline aminopeptidase from Bacillus mycoides.

Prikl Biokhim Mikrobiol

Department of Biochemistry, Warsaw University of Life Science, 02-776 Warsaw, Poland.

Published: July 2012

An intracellular arginine--specific aminopeptidase synthesized by Bacillus mycoides was purified and characterized. The purification procedure for studied aminopeptidase consisted of ammonium sulphate precipitation and three chromatographic steps: anion exchange chromatography and gel permeation chromatography. A molecular weight of -50 kDa was estimated for the aminopeptidase by gel permeation chromatography and SDS-PAGE. The optimal activity of the enzyme on arginyl-beta-naphthylamide as a substrate was at 37 degrees C and pH 9.0. The enzyme showed maximum specificity for basic amino acids: such as Arg and Lys but was also able to hydrolyze aromatic amino acids: Trp, Tyr, and Phe. Co2+ ions activated the enzyme, while Zn2+, Cu2+, Hg2+ and Mn2+ inhibited it. The enzyme is a metalloaminopeptidase whose activity is inhibited by typical metalloaminopeptidase inhibitors: EDTA and 1,10-phenanthroline. Analysis of fragments of the amino acid sequence of the purified enzyme demonstrated high similarity to AmpS of Bacillus cereus and AP II of B. thuringensis.

Download full-text PDF

Source

Publication Analysis

Top Keywords

bacillus mycoides
8
gel permeation
8
permeation chromatography
8
amino acids
8
enzyme
5
activated cobalt
4
cobalt alkaline
4
aminopeptidase
4
alkaline aminopeptidase
4
aminopeptidase bacillus
4

Similar Publications

Article Synopsis
  • This study highlights the importance of finding natural biocontrol agents to combat plant pathogens that threaten the global food supply.
  • The strain b12.3, isolated from Olkhon Island, possesses the ability to inhibit various plant pathogens and shows potential as a biocontrol agent.
  • Advanced genomic analysis revealed that b12.3 has multiple biosynthetic gene clusters and insecticidal genes, suggesting its effectiveness in pest management and providing insight into its ecological role in Lake Baikal.
View Article and Find Full Text PDF

Introduction: This study aimed to investigate the potential role of endophytic bacteria in tobacco leaves during the fermentation process to enhance the quality of tobacco.

Methods: We isolated 11 endophytic bacteria from fresh tobacco leaves and selected NS36 and NS75 based on sensory evaluation, both of which significantly improved the sensory quality of tobacco leaves.

Results: Specifically, NS36 decreased offensive taste in tobacco leaves, while NS75 improved the quality by increasing the aroma.

View Article and Find Full Text PDF

Plant diseases cost the global economy billions of US dollars every year. The problem has mainly been addressed by using chemical pesticides, but recently, the use of ants has shown promising effects against plant pathogens. However, the mechanisms accounting for these effects have not yet been determined.

View Article and Find Full Text PDF

Rhizospheric miRNAs affect the plant microbiota.

ISME Commun

January 2024

Écosystèmes, Biodiversité, Évolution (ECOBIO), Unité mixte de recherche (UMR) 6553, Centre national de la recherche scientifique (CNRS) - Université de Rennes, Campus Beaulieu, 263 Avenue du Général Leclerc, Rennes, 35042, France.

Small ribonucleic acids (RNAs) have been shown to play important roles in cross-kingdom communication, notably in plant-pathogen relationships. Plant micro RNAs (miRNAs)-one class of small RNAs-were even shown to regulate gene expression in the gut microbiota. Plant miRNAs could also affect the rhizosphere microbiota.

View Article and Find Full Text PDF

Present study aimed to identify arsenic (As)-resistant bacterial strains that can be used to mitigate arsenic stress. A bacterium Bacillus mycoides NR5 having As tolerance limit of 1100 mg L was isolated from Nag River, Maharashtra, India. It was also equipped with plant growth-promoting (PGP) attributes like phosphate solubilization, siderophores, ammonia, and nitrate reduction, with added antibiotic tolerance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!