Objective: Neuroimaging evidence suggested that the thalamic nuclei may play different roles in the progress of idiopathic generalized epilepsy (IGE). This study aimed to demonstrate the alterations in morphometry and functional connectivity in the thalamic nuclei in IGE.
Methods: Fifty-two patients with IGE characterized by generalized tonic-clonic seizures and 67 healthy controls were involved in the study. The three-dimensional high-resolution T1-weighted MRI data were acquired for voxel-based morphometry (VBM) analysis, and resting-state blood-oxygenation level functional MRI data were acquired for functional connectivity analysis. The thalamic nuclei of bilateral medial dorsal nucleus (MDN) and pulvinar, as detected with decreased gray matter volumes in patients with IGE through VBM analysis, were selected as seed regions for functional connectivity analysis.
Results: Different alteration patterns were found in functional connectivity of the thalamic nuclei with decreased gray matter volumes in IGE. Seeding at the MDN, decreased connectivity in the bilateral orbital frontal cortex, caudate nucleus, putamen and amygdala were found in the patients (P<0.05 with correction). However, seeding at the pulvinar, no significant alteration of functional connectivity was found in the patients (P<0.05 with correction).
Conclusions: Some specific impairment of thalamic nuclei in IGE was identified using morphological and functional connectivity MRI approaches. These findings may strongly support the different involvement of the thalamocortical networks in IGE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3394762 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0039701 | PLOS |
Hum Brain Mapp
December 2024
Center for Mind/Brain Sciences-CIMeC, University of Trento, Rovereto, Italy.
The thalamus is a collection of gray matter nuclei that play a crucial role in sensorimotor processing and modulation of cortical activity. Characterizing thalamic nuclei non-invasively with structural MRI is particularly relevant for patient populations with Parkinson's disease, epilepsy, dementia, and schizophrenia. However, severe head motion in these populations poses a significant challenge for in vivo mapping of thalamic nuclei.
View Article and Find Full Text PDFCogn Neurodyn
December 2024
Department of Neurology, Tangshan Gongren Hospital, Tangshan, 063000 China.
Electroencephalography (EEG) provides high temporal resolution neural data for brain-computer interfacing via noninvasive electrophysiological recording. Estimating the internal brain activity by means of source imaging techniques can further improve the spatial resolution of EEG and enhance the reliability of neural decoding and brain-computer interaction. In this work, we propose a novel EEG data-driven source imaging scheme for precise and efficient estimation of macroscale spatiotemporal brain dynamics across thalamus and cortical regions with deep learning methods.
View Article and Find Full Text PDFJ Neurosci Res
December 2024
State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Institute for Medical and Engineering Innovation, Eye and ENT Hospital, Fudan University, Shanghai, China.
Homeobox transcription factor Engrailed1 (En1) is expressed in the ectoderm and mediates the establishment of retinotectal topography, but its role in eye-specific retinogeniculate segregation and visual function remains unclear. Parvalbumin (PV) neurons, which are widely distributed in the visual pathway, play a crucial role in visual development and function. In this study, we conditionally knocked out En1 gene in PV neurons and found an expansion of the ipsilateral eye projection, while no significant effects were observed in the contralateral eye projection.
View Article and Find Full Text PDFMil Med Res
December 2024
Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
Among the existing research on the treatment of disorders of consciousness (DOC), deep brain stimulation (DBS) offers a highly promising therapeutic approach. This comprehensive review documents the historical development of DBS and its role in the treatment of DOC, tracing its progression from an experimental therapy to a detailed modulation approach based on the mesocircuit model hypothesis. The mesocircuit model hypothesis suggests that DOC arises from disruptions in a critical network of brain regions, providing a framework for refining DBS targets.
View Article and Find Full Text PDFTransl Neurosci
January 2024
Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
Functional magnetic resonance imaging (fMRI) stands as a pivotal tool in advancing our comprehension of Schizophrenia, offering insights into functional segregations and integrations. Previous investigations employing either task-based or resting-state fMRI primarily focused on large main regions of interest (ROI), revealing the thalamus and superior temporal gyrus (STG) as prominently affected areas. Recent studies, however, unveiled the cytoarchitectural intricacies within these regions, prompting a more nuanced exploration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!