NELL-1 promotes cell adhesion and differentiation via Integrinβ1.

J Cell Biochem

Dental and Craniofacial Research Institute and Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Published: December 2012

NELL-1 (Nel-like molecule-1) is a secreted osteogenic growth factor first identified in human craniosynostosis (CS) patients. NELL-1 protein has been observed to promote bone and cartilage differentiation and to suppress adipogenesis in both in vitro and in vivo models. Despite these findings, the cell surface receptors of NELL-1 have remained unknown. In this study, we observed for the first time that NELL-1 promotes cell adherence in multiple cell lines, including ST2, C3H10T1/2, M2-10B4, ATDC5, and MC3T3 cells. Additionally, we found that NELL-1 binds to extracellular Integrinβ1 and induces cell focal adhesion. By utilizing siRNA methods, we determined that NELL-1 cell surface binding and enhanced cell attachment were dependent on Integrinβ1 expression. Finally, we observed that pre-coating of culture dishes or PLGA (polylactic-co-glycolic acid) scaffold with NELL-1 resulted in a significant increase in both cell attachment and osteogenic differentiation. Our results identify for the first time a cell surface target of NELL-1, Integrinβ1, and elucidate new functions of NELL-1 in promoting cell adherence and osteogenic differentiation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcb.24253DOI Listing

Publication Analysis

Top Keywords

cell surface
12
nell-1
10
cell
10
nell-1 promotes
8
promotes cell
8
cell adherence
8
cell attachment
8
osteogenic differentiation
8
cell adhesion
4
differentiation
4

Similar Publications

Flexible deformation and special interface structure in nanoparticle-stabilized Pickering bubbles strengthen the immunological response as adjuvant.

J Mater Chem B

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Chinese Academy of Sciences, Beijing 100190, P. R. China.

Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.

View Article and Find Full Text PDF

The innate immune system plays a critical role in the rapid recognition and elimination of pathogens through pattern recognition receptors (PRRs). Among these PRRs are the C-type lectins (CTLs) langerin, mannan-binding lectin (MBL), and surfactant protein D (SP-D), which recognize carbohydrate patterns on pathogens. Each represents proteins from different compartments of the body and employs separate effector mechanisms.

View Article and Find Full Text PDF

Background And Aim: Goupi Plaster (GP) is topical traditional Chinese medicine preparation. It has been used to treat Knee Osteoarthritis (KOA) in clinical practice of traditional Chinese medicine (TCM). However, the mechanisms of GP relieve KOA are poorly understood.

View Article and Find Full Text PDF

Alginates are abundant linear polysaccharides produced by brown algae and some bacteria. They have multiple biological roles and important medical and commercial uses. Alginates are comprised of D-mannuronic acid (M) and L-guluronic acid (G) and the ratios and distribution patterns of M and G profoundly impact their physiological and rheological properties.

View Article and Find Full Text PDF

The Fem cell-surface signaling system is regulated by ExsA in and affects pathogenicity.

iScience

January 2025

Department of Oral Biology, Dr. Gerald Niznick College of Dentistry, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0W2, Canada.

Bacterial interspecies interactions shape microbial communities and influence the progression of polymicrobial infections. FemI-FemR-FemA, a cell-surface signaling system, in , is involved in the uptake of iron-chelating mycobactin produced by spp. In this report, we present the data that indicates the -PA1909 operon is positively regulated by ExsA, a master regulator for the type three secretion system (T3SS), connecting the Fem system with T3SS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!