On-line comprehensive two-dimensional liquid chromatography techniques promise to resolve samples that current one-dimensional liquid chromatography methods cannot adequately deal with. To make full use of the potential of two-dimensional liquid chromatography, optimization is required. Optimization of two-dimensional liquid chromatography is a relatively new yet important research topic the aim of which is to predict combinations of stationary and mobile phases, column formats, and chromatographic conditions that maximize resolving power and minimize analysis time. In on-line two-dimensional liquid chromatography, dilution-related issues play also an important role and these should be taken into account when developing optimization strategies. In this work, state-of-the-art strategies that support method development for on-line two-dimensional liquid chromatography through a rigorous choice of chromatographic parameters are critically reviewed. The final aim is to provide practitioners with a clear understanding of which aspects can be optimized using current on-line two-dimensional liquid chromatography strategies (and which ones cannot). In two-dimensional liquid chromatography, maximizing resolving power for a given analysis time and dilution requires optimizing efficiency, selectivity and retention. While great strides forward have been made in the optimization of efficiency-related issues, considerable effort needs still to be made in terms of (1) developing models that can predict the retention factors that given stationary/mobile phase systems can provide and (2) using this information for choosing the two ones that maximize two-dimensional liquid chromatography orthogonality. Because of this limitation, in two-dimensional liquid chromatography, this aspect is typically dealt with a posteriori through examining chromatograms. This review clearly shows that important progress in the optimization of on-line two-dimensional liquid chromatography has recently been made.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jssc.201200070 | DOI Listing |
Phys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The two-dimensional electron gas (2DEG) is a fundamental model, which is drawing increasing interest because of recent advances in experimental and theoretical studies of 2D materials. Current understanding of the ground state of the 2DEG relies on quantum Monte Carlo calculations, based on variational comparisons of different Ansätze for different phases. We use a single variational ansatz, a general backflow-type wave function using a message-passing neural quantum state architecture, for a unified description across the entire density range.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Flatiron Institute, Center for Computational Quantum Physics, New York, New York 10010, USA.
The exploration of quantum phases in moiré systems has drawn intense experimental and theoretical efforts. The realization of honeycomb symmetry has been a recent focus. The combination of strong interaction and honeycomb symmetry can lead to exotic electronic states such as fractional Chern insulator, unconventional superconductor, and quantum spin liquid.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory for Chemistry and Life Science, Institute of Integrated Research, Institute of Science Tokyo, Yokohama, 226-8501, Japan.
Atomically flat two-dimensional networks of boron are attracting attention as post-graphene materials. An introduction of cations between the boron atomic layers can exhibit unique electronic functions that are not achieved by neutral graphene or its derivatives. In the present study, we propose a synthesis strategy for ion-laminated boron layered materials in a solution phase, which enables the preparation of analogs by changing the alkali-metal species.
View Article and Find Full Text PDFNat Commun
January 2025
Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute & Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, P. R. China.
The unsatisfactory ionic conductivity of solid polymer electrolytes hinders their practical use as substitutes for liquid electrolytes to address safety concerns. Although various plasticizers have been introduced to improve lithium-ion conduction kinetics, the lack of microenvironment understanding impedes the rational design of high-performance polymer electrolytes. Here, we design a class of Hofmann complexes that offer continuous two-dimensional lithium-ion conduction channels with functional ligands, creating highly conductive electrolytes.
View Article and Find Full Text PDFAnal Chem
January 2025
Instrumental Analytical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany.
Compound-specific stable isotope analysis (CSIA) using liquid chromatography-isotope ratio mass spectrometry (LC-IRMS) is a powerful tool for determining the isotopic composition of carbon in analytes from complex mixtures. However, LC-IRMS methods are constrained to fully aqueous eluents. Previous efforts to overcome this limitation were unsuccessful, as the use of organic eluents in LC-IRMS was deemed impossible.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!