The goal of this in vivo study was to evaluate the osteoinductive and angio-inductive properties of a porous hydroxyapatite (HAp) scaffold with immobilized recombinant bone morphogenetic protein-2 (rhBMP-2) on the surface. It was hypothesized in this study that the use of a rhBMP-2 incorporated polyelectrolyte coating on the HAp scaffold would allow for controlled exposure of rhBMP-2 into the tissue and would provide a sound platform for tissue growth. The scaffolds were characterized for porosity and interconnectivity using pycnometry, scanning electron microscopy and micro-ct. These scaffolds were then divided into the following four groups: (a) HAp scaffold (n-HAp group), (b) rhBMP-2 physically adsorbed on HAp scaffold (HAp-BMP-2 Group), (c) polyelectrolyte coating on HAp scaffold without rhBMP-2 (HAp-PEI Scaffold Group), and (d) polyelectrolyte coating tethered with rhBMP-2 on HAp scaffold (HAp-PEI-BMP-2 Scaffold Group). Using 18 skeletally matured New Zealand white rabbits, these scaffolds were evaluated in a nonload bearing femoral condyle plug model. The negative controls for this study have defects that were left untreated and the positive controls have defects that were filled with autologous bone graft harvested from epsilateral iliac crest. Bone induction, vessel growth, and scaffold-bone contact were analyzed after 8-week implantation using micro-CT and histomorphometry. It was concluded from this study that the use of scaffold with an attached rhBMP-2 increased the vascularization around the implant when compared with the uncoated n-HAp scaffold, a necessary step of bone regeneration. The open-pore HAp scaffold was also concluded to provide a platform for tissue growth, drug loading, and tissue interaction.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.32745DOI Listing

Publication Analysis

Top Keywords

hap scaffold
28
polyelectrolyte coating
12
scaffold
11
coating hap
8
platform tissue
8
tissue growth
8
group polyelectrolyte
8
scaffold group
8
hap
7
rhbmp-2
7

Similar Publications

Bionic bioceramic scaffolds are essential for achieving excellent implant properties and biocompatible behavior. In this study, inspired by the microstructure of natural bone, bionic hydroxyapatite (HAp) ceramic scaffolds with different structures (body-centered cubic (BCC), face-centered cubic (FCC), and gyroid Triply Periodic Minimal Surfaces (TPMSs)) and porosities (80 vol.%, 60 vol.

View Article and Find Full Text PDF

Promoting angiogenesis, alleviating oxidative stress injury and inflammation response are crucial for bone healing. Herein, the deferoxamine (DFO)-loaded gelatin methacryloyl (GelMA) hydrogel coating (GelMA-DFO) was constructed on the 3D-printed poly(Glycolide-Co-Caprolactone)-hydroxyapatite (PGCL-HAP) scaffold. After the hydrogel coating was established, Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscope (SEM) and water contact angle measurement were employed to evaluate the characteristic and the biological properties were assessed.

View Article and Find Full Text PDF

Self-augmented catabolism mediated by Se/Fe co-doped bioceramics boosts ROS storm for highly efficient antitumor therapy of bone scaffolds.

Colloids Surf B Biointerfaces

December 2024

Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China. Electronic address:

The overexpression of glutathione (GSH) within the tumor microenvironment has long been considered as the major obstacle for reactive oxygen species (ROS)-based antitumor therapies. To address this challenge, a selenite (SeO) and ferric ion co-doped hydroxyapatite (SF-HAP) nanohybrid was synthesized, which is then introduced into poly-L-lactic acid (PLLA) to prepare porous scaffold by selective laser sintering to continuously release Fe and SeO ions. Of great significance is the released SeO catabolize GSH to generate superoxide anion (O) rather than directly eliminating GSH, thereby reversing the obstacle posed by its overexpression and achieving a "waste-to-treasure" transformation.

View Article and Find Full Text PDF

Bone tissue engineering demands advanced biomaterials with tailored properties. In this regard, composite scaffolds offer a strategy to integrate the desired functionalities. These scaffolds are expected to provide sufficient cellular activities while maintaining the required strength necessary for the bone repair for which they are intended.

View Article and Find Full Text PDF

Critical-sized bone defects present a formidable challenge in tissue engineering, necessitating innovative approaches that integrate osteogenesis and angiogenesis for effective repair. Inspired by the hierarchical porous structure of natural bone, this study introduces a novel method for the scalable production of ultra-long, copper-doped hydroxyapatite (Cu-HAp) fibers, utilizing the rapid gelation properties of guar gum (GG) under controlled conditions. These fibers serve as foundational units to fabricate three-dimensional porous scaffolds with a biomimetic hierarchical architecture.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!