The incorporation of PbSnS(2) in PbTe results in a tremendous reduction of the lattice thermal conductivity to 0.8 W/mK at room temperature, a reduction of almost 60% over bulk PbTe. Transmission electron microscopy reveals very high density displacement layers, misfit dislocations, and phase boundaries. Our thermal transport calculations based on modified Debye-Callaway model, well in agreement with the experimental measurements, reveal that the layer structured PbSnS(2) plays an important role in reducing the lattice thermal conductivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201201565 | DOI Listing |
J Phys Chem A
January 2025
School of Environment and Safety Engineering, North University of China, Taiyuan, Shanxi 030051, China.
DNP (3,4-dinitropyrazole) has attracted much interest due to its promising melting characteristics and high detonation performances, such as low melting point, high density, high detonation velocity, and low sensitivity. In this work, first-principles molecular dynamics (MD) simulations were performed to investigate the anisotropic shock response of DNP in conjunction with the multiscale shock technique (MSST). The initial decomposition mechanism was revealed through the evolution of the chemical reaction and product analysis.
View Article and Find Full Text PDFACS Nano
January 2025
Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Road, Nanshan District, Shenzhen, Guangdong 518055, PR China.
Extracellular matrix (ECM)-based small-diameter vascular grafts (SDVGs, inner diameter (ID) < 6 mm) hold great promise for clinical applications. However, existing ECM-based SDVGs suffer from limited donor availability, complex purification, high cost, and insufficient mechanical properties. SDVGs with ECM-like structure and function, and good mechanical properties were rapidly prepared by optimizing common materials and preparation, which can improve their clinical prospects.
View Article and Find Full Text PDFSci Rep
January 2025
School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, P.O. Box: 16765-163, Tehran, Iran.
In this study, Response Surface Methodology (RSM) and Artificial Neural Networks (ANN) were developed to estimate the equilibrium solubility and partial pressure of CO in blended aqueous solutions of diisopropanolamine (DIPA) and 2-amino-2-methylpropanol (AMP). In this study, several key parameters were analyzed to understand the behavior of the aqueous DIPA/AMP system for CO capture. Including DIPA (9-21 wt%), AMP (9-21 wt%), temperature (323.
View Article and Find Full Text PDFNat Chem
January 2025
State Key Laboratory of Advanced Drug Delivery and Release Systems, Liangzhu Laboratory, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Vesicles play critical roles in cellular materials storage and signal transportation, even in the formation of organelles and cells. Natural vesicles are composed of a lipid layer that forms a membrane for the enclosure of substances inside. Here we report a coacervate vesicle formed by the liquid-liquid phase separation of cholesterol-modified DNA and histones.
View Article and Find Full Text PDFAesthetic Plast Surg
January 2025
Department of Plastic and Reconstructive Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No.1, Shuaifuyuan, Dongcheng District, Beijing, China.
Background: Perioral rejuvenation is challenging due to the lack of spatial anatomical understanding of the labiomandibular fold (LMF). The LMF's formation mechanism remains underexplored due to intricate relationships between musculature and subcutaneous structures. This study aimed to clarify the three-dimensional structures of the LMF using micro-computed tomography and histology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!