Polycyclic azoniahetarenes were employed to determine the effect of the structure of unsubstituted polyaromatic ligands on their quadruplex-DNA binding properties. The interactions of three isomeric diazoniadibenzo[b,k]chrysenes (4 a-c), diazoniapentaphene (5), diazoniaanthra[1,2-a]anthracene (6), and tetraazoniapentapheno[6,7-h]pentaphene (3) with quadruplex DNA were examined by DNA melting studies (FRET melting) and fluorimetric titrations. In general, penta- and hexacyclic azoniahetarenes bind to quadruplex DNA (K(b) ≈10(6) M(-1)) even in the absence of additional functional side chains. The binding modes of 4 a-c and 3 were studied in more detail by ligand displacement experiments, isothermal titration calorimetry, and CD and NMR spectroscopy. All experimental data indicate that terminal π stacking of the diazoniachrysenes to the quadruplex is the major binding mode; however, because of different electron distributions of the π systems of each isomer, these ligands align differently in the binding site to achieve ideal binding interactions. It is proposed that tetraazonia ligand 3 binds to the quadruplex by terminal stacking with a small portion of its π system, whereas a significant part of the bulky ligand most likely points outside the quadruplex structure, and is thus partially placed in the grooves. Notably, 3 and the known tetracationic porphyrin TMPyP4 exhibit almost the same binding properties towards quadruplex DNA, with 3 being more selective for quadruplex than for duplex DNA. Overall, studies on azonia-type hetarenes enable understanding of some parameters that govern the quadruplex-binding properties of parent ligand systems. Since unsubstituted ligands were employed in this study, complementary and cooperative effects of additional substituents, which may interfere with the ligand properties, were eliminated.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201103019DOI Listing

Publication Analysis

Top Keywords

quadruplex dna
12
polycyclic azoniahetarenes
8
unsubstituted ligands
8
binding properties
8
terminal stacking
8
binding
7
quadruplex
7
dna
6
ligand
5
azoniahetarenes assessing
4

Similar Publications

Na-concentration dependent conformational switch of oncogene RET G-quadruplex DNA in solution.

Int J Biol Macromol

January 2025

State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China. Electronic address:

Proto-oncogene RET is overexpressed in many cancers, and its expression level is positively related to the size and malignancy of the tumors. Effective inhibition of its overexpression can be used to potentially treat cancers. A guanine-rich GC-boxes (I-V) sequence in its promoter region folds into noncanonical G-quadruplex (G4) DNA structures, negatively regulating its expression by interactions with small molecules.

View Article and Find Full Text PDF

Identification of G-quadruplex nucleic acid structures by high-throughput sequencing: A review.

Int J Biol Macromol

January 2025

School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China; Smart Medical Innovation Technology Center, Guangdong University of Technology, Guangzhou 510006, China. Electronic address:

G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures formed by guanine-rich DNA or RNA sequences. These structures play pivotal roles in cellular processes, including DNA replication, transcription, RNA splicing, and protein translation. High-throughput sequencing has significantly advanced the study of G4s by enabling genome-wide mapping and detailed characterization.

View Article and Find Full Text PDF

i-Motifs (iMs) are quadruplex nucleic acid conformations that form in cytosine-rich regions. Because of their acidic pH dependence, iMs were thought to form only in vitro. The recent development of an iM-selective antibody, iMab, has allowed iM detection in cells, which revealed their presence at gene promoters and their cell cycle dependence.

View Article and Find Full Text PDF

G-quadruplex-forming small RNA inhibits coronavirus and influenza A virus replication.

Commun Biol

January 2025

Division of Microbiology, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, 4-4-1, Komatsuhima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.

Future pandemic threats may be caused by novel coronaviruses and influenza A viruses. Here we show that when directly added to a cell culture, 12mer guanine RNA (G12) and its phosphorothioate-linked derivatives (G12(S)), rapidly entered cytoplasm and suppressed the propagation of human coronaviruses and influenza A viruses to between 1/100 and nearly 1/1000 of normal virus infectivity without cellular toxicity and induction of innate immunity. Moreover, G12(S) alleviated the weight loss caused by coronavirus infection in mice.

View Article and Find Full Text PDF

Correction for 'A novel platinum(II) complex with a berberine derivative as a potential antitumor agent targeting G-quadruplex DNA' by Shu-Lin Zhang , , 2025, https://doi.org/10.1039/d4ob01705f.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!