AI Article Synopsis

  • Class IA PI3Ks are crucial for osteoclast function, activated by growth factors like α(v) β(3) integrin and c-Fms, which influence bone resorption.
  • The deletion of p85 genes in osteoclasts leads to an osteopetrotic phenotype due to impaired bone-resorbing activity and defects in necessary cellular processes.
  • This study highlights the importance of the class IA PI3K-Akt pathway in osteoclast activity and suggests potential therapeutic targets for treating bone diseases.

Article Abstract

Class IA phosphatidylinositol 3-kinases (PI3Ks) are activated by growth factor receptors and regulate a wide range of cellular processes. In osteoclasts, they are activated downstream of α(v) β(3) integrin and colony-stimulating factor-1 receptor (c-Fms), which are involved in the regulation of bone-resorbing activity. The physiological relevance of the in vitro studies using PI3K inhibitors has been of limited value, because they inhibit all classes of PI3K. Here, we show that the osteoclast-specific deletion of the p85 genes encoding the regulatory subunit of the class IA PI3K results in an osteopetrotic phenotype caused by a defect in the bone-resorbing activity of osteoclasts. Class IA PI3K is required for the ruffled border formation and vesicular transport, but not for the formation of the sealing zone. p85α/β doubly deficient osteoclasts had a defect in macrophage colony-stimulating factor (M-CSF)-induced protein kinase B (Akt) activation and the introduction of constitutively active Akt recovered the bone-resorbing activity. Thus, the class IA PI3K-Akt pathway regulates the cellular machinery crucial for osteoclastic bone resorption, and may provide a molecular basis for therapeutic strategies against bone diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbmr.1703DOI Listing

Publication Analysis

Top Keywords

bone-resorbing activity
12
class phosphatidylinositol
8
osteoclastic bone
8
bone resorption
8
protein kinase
8
class pi3k
8
class
5
phosphatidylinositol 3-kinase
4
3-kinase regulates
4
regulates osteoclastic
4

Similar Publications

Background: Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice.

View Article and Find Full Text PDF

Gallein is a known Gβγ subunit inhibitor, but its function in bone metabolism, especially in osteoblasts, and its molecular mechanism remains to be elucidated. Osteoprotegerin (OPG), which is secreted from osteoblasts, binds to nuclear factor kB receptor activator (RANK) ligand (RANKL) as a decoy receptor, prevents RANKL-RANK binding, and inhibits bone resorption. IL-6 is not only a bone resorption factor but also as a bone metabolism regulator.

View Article and Find Full Text PDF

An In Vitro Model of Murine Osteoclast-Mediated Bone Resorption.

Bio Protoc

November 2024

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Osteoclasts are terminally differentiated multinucleated giant cells that mediate bone resorption and regulate skeletal homeostasis under physiological and pathological states. Excessive osteoclast activity will give rise to enhanced bone resorption, being responsible for a wide range of metabolic skeletal diseases, ranging from osteoporosis and rheumatoid arthritis to tumor-induced osteolysis. Therefore, the construction of in vitro models of osteoclast-mediated bone resorption is helpful to better understand the functional status of osteoclasts under (patho)physiological conditions.

View Article and Find Full Text PDF

Formation of multinucleated osteoclasts depends on an oxidized species of cell surface-associated La protein.

Elife

October 2024

Section on Membrane Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, United States.

Article Synopsis
  • Osteoclasts are special cells that help break down bone, and they work together to keep our bones healthy throughout our lives.
  • A protein called La is found on the surface of these cells, and it helps them fuse and become more powerful in breaking down bone.
  • Scientists discovered that a certain type of chemical signal, called reactive oxygen species (ROS), changes the La protein, helping it move to the surface and making the osteoclasts better at their job, which could lead to new treatments for bone diseases.
View Article and Find Full Text PDF

Epigenetic modifications affect cell differentiation via transcriptional regulation. G9a/EHMT2 is an important epigenetic modifier that catalyzes the methylation of histone 3 lysine 9 (H3K9) and interacts with various nuclear proteins. In this study, we investigated the role of G9a in osteoclast differentiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!