Effect of dirhamnolipid on the removal of phenol catalyzed by laccase in aqueous solution.

World J Microbiol Biotechnol

College of Environmental Science and Engineering, Hunan University, Changsha, 410082, People's Republic of China.

Published: January 2012

In this study, the effects of three surfactants, i.e. the anionic biosurfactant dirhamnolipid (diRL), the cationic surfactant hexadecyltrimethyl ammonium bromide (CTAB), and the anionic surfactant sodium dodecyl sulfate (SDS), on the removal of phenol catalyzed by laccase were studied first. CTAB and SDS were detrimental, while diRL improved phenol removal and was selected for detailed research. The biosurfactant increased the activity of laccase and the removal of phenol with the increase of diRL concentrations from 10.6 to 318 μM. DiRL at 318 μM improved the removal when the initial concentrations of phenol were from 50 to 400 mg/l. In particular, the removal of phenol with 318 μM diRL was 4.3-6.4 folds that of the controls within 24 h when the initial concentration of phenol was 400 mg/l. The presence of diRL at 318 μM also caused the complete removal (above 98%) of phenol at concentrations from 50 to 400 mg/l after 24 h. The enhancement of phenol removal was over a wide range of pH and temperatures, and the highest removal efficiency was obtained at pH 6.0 and 50°C. The results suggest that diRL had potential application in the enhancement of phenols removal catalyzed by laccase in water treatment or remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-011-0806-3DOI Listing

Publication Analysis

Top Keywords

removal phenol
16
catalyzed laccase
12
phenol
9
removal
9
phenol catalyzed
8
phenol removal
8
318 μm dirl
8
dirl 318 μm
8
phenol 400 mg/l
8
dirl
7

Similar Publications

High-entropy alloy nanoparticles (HEA-NPs) exhibit favorable properties in catalytic processes, as their multi-metallic sites ensure both high intrinsic activity and atomic efficiency. However, controlled synthesis of uniform multi-metallic ensembles at the atomic level remains challenging. This study successfully loads HEA-NPs onto a nitrogen-doped carbon carrier (HEAs) and pioneers the application in peroxymonosulfate (PMS) activation to drive Fenton-like oxidation.

View Article and Find Full Text PDF

Potential and characteristics on nitrobenzene degradation by biological acidification.

J Environ Manage

December 2024

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing, 100012, PR China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing, 100012, PR China. Electronic address:

Biological acidification, efficient and low-cost biotechnology, is crucial in treating pharmaceutical, pesticide water, and petrochemical wastewater. Nitrobenzene is a typical organic pollutant in petrochemical wastewater with high toxicity and long persistence. However, its effect on hydrolysis acidification is yet to be fully elucidated.

View Article and Find Full Text PDF

Utilization of renewable resources has become imperative, and considerable efforts have been devoted to tackling diverse global sustainability challenges, which contribute to the circular economy. The focus of this work was to optimize the extraction of polyphenolic compounds in bark using microwave-assisted (MAE) and ultrasonically assisted (UAE) extractions and evaluate the biological efficacies of the extracts. Additionally, the residue of the extracted pine bark was subjected to steam gasification to produce hydrogen-rich syngas and activated carbon.

View Article and Find Full Text PDF

Objectives: (Sonn.), belonging to the Sapindaceae family, has historically been used for the treatment of gastrointestinal ailments, including ulcers, gastritis, diarrhea, and infections Plants in the Sapindaceae family have demonstrated potential anthelmintic effects, while the efficacy of remains barely investigated. seeds are often discarded as waste; however, utilizing these seeds promotes sustainable practices and may provide a natural alternative to conventional anthelmintics.

View Article and Find Full Text PDF

This study evaluates the combined use of H₂O₂ and thermally activated S₂O₈⁻ (T-PDS) for the degradation of phenolic compounds (PhOH) in wastewater, aiming to limit or eliminate sludge production. Phenolic compounds are common in industrial effluents, and their effective removal is crucial for reducing environmental impact. The study employs Response Surface Methodology (RSM) and Principal Component Analysis (PCA) to optimise critical variables such as temperature, pH, and oxidant concentrations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!