Intestinal Escherichia coli caused diarrhea in chicken makes serious damage directly to the chicken culture industry. Bacteriophage therapy is able to control the diarrhea in chickens effectively. In this study, the biosafety of bacteriophages was evaluated for treating intestinal pathogenic E. coli, which induced diarrhea in chickens. Ten bacteriophages were isolated from feces of chickens with diarrhea using the ill-chicken intestinal pathogenic E. coli 3-2 as target organism. Three bacteriophages propagated on E. coli 3-2 with relative big and clear plaques were selected and used together for toxicity experiment and evaluating the effect of therapy on chicken weight gain. In 3 weeks of trial, no mice given with or without mixed bacteriophages died, and the weight of mice of the experimental group did not show significant difference to the control group after 3 weeks infection. Besides remarkable decreasing the death rate of chickens with diarrhea, treatment of mixed bacteriophages also promoted the weight gain and saved the diet consumption as the utilize rate of diet increased 11% compared with the control group. These observations indicated that a mixture of three bacteriophages would be biosafe for rapid and effective preventing pathogenic E. coli infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-011-0784-5 | DOI Listing |
Open Forum Infect Dis
January 2025
Division of Healthcare Quality Promotion, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
Background: We investigated hospitalized carbapenem-resistant Enterobacterales (CRE) and extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E) cases with and without COVID-19, as identified through Emerging Infections Program surveillance in 10 sites from 2020 to 2022.
Methods: We defined a CRE case as the first isolation of , complex, , , , or resistant to any carbapenem. We defined an ESBL-E case as the first isolation of , , or resistant to any third-generation cephalosporin and nonresistant to all carbapenems tested.
Prep Biochem Biotechnol
January 2025
College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang Province, People's Republic of China.
Myo-inositol is an active sugar alcohol which has important physiological functions. In this study, an engineered strain that could simultaneously utilize glucose and xylose to produce myo-inositol was constructed, and its fermentation performance was determined. Firstly, the gene was deleted to make BL21 capable of utilizing glucose and xylose simultaneously as mixed carbon source.
View Article and Find Full Text PDFFood Chem X
January 2025
Department of Family and Consumer Sciences, University of Ghana, Legon, Accra, Ghana.
Oxidative stress and microbial growth deteriorate food quality and cause safety risks. Therefore, the present study was investigated to explore the nutritional, sensorial, anti-oxidative and anti-microbial attributes of flaxseed powder (FP) supplemented at 2-8 % (i.e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, 18071 Granada, Spain.
Excessive and uncontrolled application of agrochemicals has resulted in contamination of terrestrial and aquatic environments. In the past decade, metal-organic frameworks (MOFs) have been studied as agrochemical release systems to enhance efficiency while reducing the leaching of toxic molecules to the environment. In this work, we take a further step and use organic agrochemicals as linkers in the preparation of MOFs, which we have called AgroMOFs.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Electronic Engineering, Laboratory of Micro/Nano-Optoelectronics, Xiamen University, Xiamen, Fujian 361005, China; Institute of Nanoscience and Applications (INA), Southern University of Science and Technology (SUSTech), Shenzhen 518055, China.
Managing undesirable biofilms is a persistent challenge in water treatment and distribution systems. Although ultraviolet-light emitting diode (UV-LED) irradiation, an emerging disinfection method with the chemical-free and emission-adjustable merits, has been widely reported effective to inactivate planktonic bacteria, few studies have examined its effects on biofilms. This study aims to fill this gap by exploring the performance and mechanism of UV-LEDs on the prefabricated Escherichia coli (E.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!