Cell immobilization has the ability to influence the survival and functional characteristics of probiotic bacterial strains in harsh environments. This study investigated the effect of cell immobilization and passage through a simulated gastrointestinal tract (GI) on the antibacterial activity of Lactobacillus reuteri DPC16. Antibacterial activity, reuterin production and diol dehydratase activity were assayed in recovered isolates of L. reuteri that had been immobilized in Ca alginate-skim milk, and incubated in simulated GI fluids. Among all the recovered isolates tested, any that had undergone immobilization followed by immediate recovery of the cells without subsequent incubation in any fluids demonstrated the highest reuterin production, antimicrobial activity and diol dehydratase enzyme activity. L. reuteri DPC16 cells that had been immobilized, incubated in simulated GI fluids, and subsequently recovered from the beads often showed some loss of antimicrobial activity compared to the immobilized cells. The data confirm that the process of immobilization of L. reuteri in Ca alginate-skim milk, rather than the passage through simulated GI fluids, resulted in enhanced antibacterial activity. This is attributed to increased diol dehydratase activity, resulting in increased reuterin production.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11274-012-1113-3DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
16
cell immobilization
12
reuteri dpc16
12
passage simulated
12
reuterin production
12
diol dehydratase
12
simulated fluids
12
activity
9
activity lactobacillus
8
lactobacillus reuteri
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!