Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The biomass degrading enzymatic potential of 101 thermophilic bacterial strains isolated from a volcanic environment (Santorini, Aegean Sea, Greece) was assessed. 80 % of the strains showed xylanolytic activity in Congo Red plates, while only eight could simultaneously hydrolyze cellulose. Fifteen isolates were selected on the basis of their increased enzyme production, the majority of which was identified as Geobacilli through 16S rDNA analysis. In addition, the enzymatic profile was evaluated in liquid cultures using various carbon sources, a procedure that revealed lack of correlation on xylanase levels between the two cultivation modes and the inability of solid CMC cultures to fully unravel the cellulose degrading potential of the isolates. Strain SP24, showing more than 99 % 16S DNA similarity with Geobacillus sp. was further studied for its unique ability to simultaneously exhibit cellulase, xylanase, β-glucosidase and β-xylosidase activities. The first two enzymes were produced mainly extracellularly, while the β-glycosidic activities were primarily detected in the cytosol. Maximum enzyme production by this strain was attained using a combination of wheat bran and xylan in the growth medium. Bioreactor cultures showed that aeration was necessary for both enhanced growth and enzyme production. Aeration had a strong positive effect on cellulase production while it negatively affected expression of β-glucosidase. Xylanase and β-xylosidase production was practically unaffected by aeration levels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-012-1100-8 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!