Mechanisms of brain injury in intraventricular hemorrhage (IVH) of premature infants are elusive, and no therapeutic strategy exists to prevent brain damage in these infants. Therefore, we developed an in vitro organotypic forebrain slice culture model to advance mechanistic studies and therapeutic developments for this disorder. We cultured forebrain slices from E29 rabbit pups and treated the cultured slices (CS) with moderate (50 μl) or large (100 μl) amounts of autologous blood to mimic moderate and severe IVH. Blood-induced damage to CS was evaluated by propidium iodide staining, lactate dehydrogenase (LDH) levels, microglial density, neuronal degeneration, myelination, and gliosis over 2 weeks after the initiation of culture. CS were viable for at least 14 days in vitro (DIV). The application of blood induced significant neural cell degeneration. Degenerating cells were more abundant and LDH levels were elevated in a dose-dependent manner in CS treated with 50 versus 100 μl of blood compared with untreated controls. Microglial density was higher in blood-treated CS compared with controls at both 7 and 14 days posttreatment, and myelination was reduced and gliosis enhanced. Selective application of blood fractions revealed that CS treated with plasma displayed more hypomyelination and gliosis compared with erythrocyte-treated slices. This study develops and characterizes a novel rabbit forebrain slice culture model of IVH that exhibits neuropatholgical changes similar to those in human infants with IVH. Importantly, plasma appears to induce greater white matter damage than erythrocytes in IVH,indicating plasma as a source of neurotoxic components.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3439584 | PMC |
http://dx.doi.org/10.1002/jnr.23102 | DOI Listing |
NPJ Regen Med
January 2025
Institute of Molecular Cardiology, Department of Medicine, University of Louisville, Louisville, USA.
Cardiomyocytes (CMs) lost during ischemic cardiac injury cannot be replaced due to their limited proliferative capacity. Calcium is an important signal transducer that regulates key cellular processes, but its role in regulating CM proliferation is incompletely understood. Here we show a robust pathway for new calcium signaling-based cardiac regenerative strategies.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, 30625 Hannover, Germany.
Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of living myocardial slices (LMSs) have not been investigated so far.
View Article and Find Full Text PDFNeurochem Res
January 2025
Departments of Pediatrics and Systems Pharmacology & Translational Therapeutics, The Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.
In mice engineered to express enhanced green fluorescent protein (eGFP) under the control of the entire glutamate transporter 1 (GLT1) gene, eGFP is found in all 'adult' cortical astrocytes. However, when 8.3 kilobases of the human GLT1/EAAT2 promoter is used to control expression of tdTomato (tdT), tdT is only found in a subpopulation of these eGFP-expressing astrocytes.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Italy. Electronic address:
Cannabis derivatives are among the most widely used psychoactive substances in the world, which leads to growing medical concerns regarding its chronic use and abuse especially among adolescents. Exposure to THC during formative years produces long-term behavioral alterations that share similarities with symptoms of psychiatric and neurodevelopmental disorders. In this study, we have analyzed the functional and molecular mechanisms that might underlie these alterations.
View Article and Find Full Text PDFInflamm Res
January 2025
Medical Faculty and University Hospital, Institute of Neural and Sensory Physiology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany.
Background: Adenosine, an ATP degradation product, is a sleep pressure factor. The adenosine 1 receptor (A1R) reports sleep need. Histaminergic neurons (HN) of the tuberomamillary nucleus (TMN) fire exclusively during wakefulness and promote arousal.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!