AI Article Synopsis

  • - The study focuses on the thermodynamics of long DNA interstrand crosslinks (ICLs) formed by anticancer drugs, which have not been thoroughly investigated compared to shorter DNA duplexes.
  • - Through computer modeling, researchers found that ICLs can significantly alter the melting temperature of DNA, with changes ranging from -17 to +47°C, depending on specific free energy factors, while being only slightly influenced by DNA sequence and GC content.
  • - The research proposes methods for understanding the impact of different crosslinking agents on DNA stability, including a comparative approach for evaluating the thermal effects and structural alterations caused by ICLs.

Article Abstract

Although many anticancer drugs exert their biological activity by forming DNA interstrand crosslinks (ICLs), the thermodynamics of biologically relevant long crosslinked DNAs has not been intensively studied in contrast to short duplexes. Here, we carry out computer modeling of the shift of melting temperature of long DNAs caused by ICLs taking into account crosslinking effect in itself and concomitant local alterations in the free energy (δG) of the helix-coil transition at sites of ICLs. Depending on δG, DNA interstrand crosslinks at per nucleotide concentration r = 0.05 can change the melting temperature by value from -17 to +47°C, and the influence weakly depends on DNA sequence and GC content. A change in melting temperature caused by introduction of interstrand crosslinking in modified DNA at sites of modifications also depends on δG and varies from 0 to +12°C. Comparison with experiment for the three platinum crosslinking compounds demonstrates utility of the theoretical method for understanding how crosslinking compounds can influence the melting behavior. On the basis of the method, interdependence of local distortions and crosslinking in itself was studied for thermal effect of ICLs. A method for evaluating the nature of the structural alteration that produces a change in thermal stability for short crosslinked DNA is also proposed. The methods can be used for comparative thermodynamic characterization of various DNA crosslinking agents.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bip.22077DOI Listing

Publication Analysis

Top Keywords

dna interstrand
12
interstrand crosslinks
12
melting temperature
12
thermal stability
8
change melting
8
crosslinking compounds
8
dna
7
crosslinking
6
stability dna
4
interstrand
4

Similar Publications

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

Broad repression of DNA repair genes in senescent cells identified by integration of transcriptomic data.

Nucleic Acids Res

December 2024

The David and Inez Myers Laboratory for Cancer Research,  Tel Aviv University, Tel Aviv 6997801, Israel.

Cellular senescence plays a significant role in tissue aging. Senescent cells, which resist apoptosis while remaining metabolically active, generate endogenous DNA-damaging agents, primarily reactive oxygen species. Efficient DNA repair is therefore crucial in these cells, especially when they undergo senescence escape, resuming DNA replication and cellular proliferation.

View Article and Find Full Text PDF

A Photoinducible DNA Cross-Linking Agent with Potent Cytotoxicity and Selectivity Toward Triple-Negative Breast Cancer Cell Line.

Chem Res Toxicol

December 2024

Department of Chemistry and Biochemistry and the Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, United States.

DNA interstrand cross-links (ICLs) are the sources of the cytotoxicity of many anticancer agents. Selenium compounds showed great potential as anticancer drugs. In this work, we synthesized a binaphthalene analog containing phenyl selenide (-SePh) as the leaving group and investigated its photochemical reactivity toward DNA as well as its cytotoxicity and selectivity.

View Article and Find Full Text PDF

Photo-Cross-linked DNA Structures Greatly Improves Their Serum Nuclease Resistances and Gene Knock-In Efficiencies.

Small Methods

December 2024

Hefei National Research Center for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.

The stabilization and structural integrity of DNA architectures remain significant challenges in their biomedical applications, particularly when inserting functional units into the genome using long single-stranded DNA (lssDNA). To address these challenges, a site-specific photo-cross-linking method is employed. Single-stranded oligonucleotides, containing one or two photosensitive cyanovinylcarbazole nucleoside (K) molecules, are precisely incorporated and cross-linked at the specific sites of ssDNA through base-pairing, followed by rapid UV irradiation at 365 nm.

View Article and Find Full Text PDF

Acetaldehyde is the primary metabolite of alcohol and is present in many environmental sources including tobacco smoke. Acetaldehyde is genotoxic, whereby it can form DNA adducts and lead to mutagenesis. Individuals with defects in acetaldehyde clearance pathways have increased susceptibility to alcohol-associated cancers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!