Antarctic environments can sustain a great diversity of well-adapted microorganisms known as psychrophiles or psychrotrophs. The potential of these microorganisms as a resource of enzymes able to maintain their activity and stability at low temperature for technological applications has stimulated interest in exploration and isolation of microbes from this extreme environment. Enzymes produced by these organisms have a considerable potential for technological applications because they are known to have higher enzymatic activities at lower temperatures than their mesophilic and thermophilic counterparts. A total of 518 Antarctic microorganisms, were isolated during Antarctic expeditions organized by the Instituto Antártico Uruguayo. Samples of particules suspended in air, ice, sea and freshwater, soil, sediment, bird and marine animal faeces, dead animals, algae, plants, rocks and microbial mats were collected from different sites in maritime Antarctica. We report enzymatic activities present in 161 microorganisms (120 bacteria, 31 yeasts and 10 filamentous fungi) isolated from these locations. Enzymatic performance was evaluated at 4 and 20°C. Most of yeasts and bacteria grew better at 20°C than at 4°C, however the opposite was observed with the fungi. Amylase, lipase and protease activities were frequently found in bacterial strains. Yeasts and fungal isolates typically exhibited lipase, celullase and gelatinase activities. Bacterial isolates with highest enzymatic activities were identified by 16S rDNA sequence analysis as Pseudomonas spp., Psychrobacter sp., Arthrobacter spp., Bacillus sp. and Carnobacterium sp. Yeasts and fungal strains, with multiple enzymatic activities, belonged to Cryptococcus victoriae, Trichosporon pullulans and Geomyces pannorum.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-012-1032-3 | DOI Listing |
Curr Pharm Des
January 2025
Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Kingdom of Saudi Arabia.
Nanogels (NGs) are presently the focus of extensive research because of their special qualities, including minimal particle size, excellent encapsulating efficacy, and minimizing the breakdown of active compounds. As a result, NGs are great candidates for drug delivery systems. Cross-linked nanoparticles (NPs) called stimulus-responsive NGs are comprised of synthetic, natural, or a combination of natural and synthetic polymers.
View Article and Find Full Text PDFJACS Au
January 2025
Applied Molecular Enzyme Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Interfacial enzyme catalysis is widespread in both nature and industry. Granular starch is a sustainable and abundant raw material for which a rigorous correlation of the surface structure with enzymatic degradation is lacking. Here pullulanase-catalyzed debranching of 12 granular starches varying in amylopectin contents and branch chain contents and lengths is shown to present a biphasic relationship characteristic of the Sabatier principle.
View Article and Find Full Text PDFJACS Au
January 2025
Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
Polyketide synthases (PKSs) are multidomain enzymatic assembly lines that biosynthesize a wide selection of bioactive natural products from simple building blocks. In contrast to their -acyltransferase (AT) counterparts, -AT PKSs rely on stand-alone ATs to load extender units onto acyl carrier protein (ACP) domains embedded in the core PKS machinery. -AT PKS gene clusters also encode stand-alone acyl hydrolases (AHs), which are predicted to share the overall fold of ATs but function like type II thioesterases (TEs), hydrolyzing aberrant acyl chains from ACP domains to promote biosynthetic efficiency.
View Article and Find Full Text PDFChem Sci
January 2025
Department of Chemistry, National Institute of Technology Rourkela - 769008 Odisha India +91-661-2462651 +91-661-2462980.
The self-assembled ferritin protein nanocage plays a pivotal role during oxidative stress, iron metabolism, and host-pathogen interaction by executing rapid iron uptake, oxidation and its safe-storage. Self-assembly creates a nanocompartment and various pores/channels for the uptake of charged substrates (Fe) and develops a concentration gradient across the protein shell. This phenomenon fuels rapid ferroxidase activity by an upsurge in the substrate concentration at the catalytic sites.
View Article and Find Full Text PDFChem Biomed Imaging
January 2025
In Vivo Multifunctional Magnetic Resonance Center, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506, United States.
Enzyme catalytic activities are critical biomarkers of tissue states under physiological and pathophysiological conditions. However, the direct measurement and imaging of enzyme activity remains extremely challenging. We report the synthesis and characterization of the first stable triarylmethyl (TAM) radical substrate of alkaline phosphatase (TAM-ALPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!