The Patagonian Lakes have particular environmental conditions with or without intermittent disturbances. The study of the microorganisms present in aquatic ecosystems has increased notably because they can be used as micro-scale bioindicators of, among others, anthropogenic pollution and climatic change. The aim of the work was to compare the composition of the bacterial communities associated with sediments of three Patagonian Lakes with different geomorphologic patterns and disturbances. The lake sediments were characterized by molecular techniques, physiology profiles and physico-chemical analyses. The metabolic and physiological profiles of the microbial community demonstrated that non-impacted Tranquilo Lake is statistically different to impacted Bertrand and Plomo Lakes. Similar results were detected by DGGE profiles. FISH results demonstrated that betaproteobacteria showed the highest count in the Tranquilo Lake while gammaproteobacteria showed the highest counts in the Bertrand and Plomo Lakes, indicating that their sediments are highly dystrophic. The results demonstrate differences in the metabolic activity and structural and functional composition of bacterial communities of the studied lakes, which have different geomorphological patterns due to disturbances such as volcanic activity and the climatic change.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-011-0953-6 | DOI Listing |
Int J Mol Sci
January 2025
Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar, 01145, P.O. Box 54-D, Temuco 4811230, Chile.
Over recent decades, Northern Patagonia in Chile has seen significant growth in agriculture, livestock, forestry, and aquaculture, disrupting lake ecosystems and threatening native species. These environmental changes offer a chance to explore how anthropization impacts zooplankton communities from a molecular-ecological perspective. This study assessed the anthropogenic impact on by comparing its proteomes from two lakes: Llanquihue (anthropized) and Icalma (oligotrophic).
View Article and Find Full Text PDFMicrob Ecol
October 2024
Laboratorio de Limnologia, INIBIOMA, CONICET-University of Comahue, Quintral 1250, 8400, Bariloche, Argentina.
One of the most noticeable environmental discontinuities in mountains is the transition that exists in vegetation below and above the treeline. In the North Patagonian Andean lakes (between 900 and 1950 m a.s.
View Article and Find Full Text PDFPLoS One
April 2024
Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, United States of America.
The genetic identification of evolutionary significant units and information on their connectivity can be used to design effective management and conservation plans for species of concern. Despite having high dispersal capacity, several seabird species show population structure due to both abiotic and biotic barriers to gene flow. The Kelp Gull is the most abundant species of gull in the southern hemisphere.
View Article and Find Full Text PDFEcol Evol
February 2024
PUNABIO S.A. Campus USP-T San Pablo Argentina.
Laguna Verde's dome-shaped structures are distinctive formations within the Central Andes, displaying unique geomicrobiological features. This study represents a pioneering investigation into these structures, assessing their formation, associated taxa, and ecological significance. Through a multifaceted approach that includes chemical analysis of the water body, multiscale characterization of the domes, and analysis of the associated microorganisms, we reveal the complex interplay between geology and biology in this extreme environment.
View Article and Find Full Text PDFSci Total Environ
March 2024
University of Geneva, Institute for Environmental Sciences, Climatic Change Impacts and Risks in the Anthropocene, Switzerland; Department of Earth Sciences, University of Geneva, Switzerland; Department F.-A. Forel for Environmental and Aquatic Sciences, University of Geneva, Switzerland.
We present a glacial-related lake inventory for a region spanning 41.5° - 47° S in Patagonian Andes, where information on past glacier lake outburst floods (GLOF's) has hitherto remained significantly underreported. Analyzing remotely sensed images, we obtained data on 702 glacial-related lakes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!