[Progresses on plant AP2/ERF transcription factors].

Yi Chuan

Institute of Botany, Jiangsu Province and the Chinese Academy of Sciences, Nanjing 210014, China.

Published: July 2012

Plant AP2/ERF transcription factor with AP2/ERF domain containing 60-70 amino acids is a huge gene family present in all plant. AP2/ERF transcriptional factors are involved in various biological functions such as plant development, flower development, fruit and seed maturation, wounding, pathogen defense, high salty, drought, and so on. AP2/ERF transcription factor are involved in salicylic acid, jasmonic acid, ethylene, abscisic acid signal transduction pathways and among them. The transcription factors are cross-talk factor in stress signal pathway. This paper summarizes the most advanced researches on types, biological functions, and gene regulations of plant AP2/ERF transcription factors.

Download full-text PDF

Source
http://dx.doi.org/10.3724/sp.j.1005.2012.00835DOI Listing

Publication Analysis

Top Keywords

plant ap2/erf
16
ap2/erf transcription
16
transcription factor
8
biological functions
8
transcription factors
8
ap2/erf
6
transcription
5
[progresses plant
4
transcription factors]
4
plant
4

Similar Publications

ERF56, a member of the APETALA2/ETHYLENE-RESPONSIVE FACTOR (AP2/ERF) transcription factor (TF) family, was reported to be an early nitrate-responsive TF in . But the function of in nitrate signaling remains not entirely clear. This study aimed to investigate the role of in nitrate-dependent plant growth and nitrate signaling.

View Article and Find Full Text PDF

Identification and Functional Analysis of Candidate Genes Influencing Citrus Leaf Size Through Transcriptome and Coexpression Network Approaches.

Genes (Basel)

January 2025

Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Citrus Breeding and Cultivation Technology Innovation Center, Guangxi Academy of Specialty Crops, Guilin 541004, China.

Background: Leaves are the main organs involved in photosynthesis. They capture light energy and promote gas exchange, and their size and shape affect yield. Identifying the regulatory networks and key genes that control citrus leaf size is essential for increasing citrus crop yield.

View Article and Find Full Text PDF

Research Progress on Gene Regulation of Plant Floral Organogenesis.

Genes (Basel)

January 2025

National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.

Flowers, serving as the reproductive structures of angiosperms, perform an integral role in plant biology and are fundamental to understanding plant evolution and taxonomy. The growth and organogenesis of flowers are driven by numerous factors, such as external environmental conditions and internal physiological processes, resulting in diverse traits across species or even within the same species. Among these factors, genes play a central role, governing the entire developmental process.

View Article and Find Full Text PDF

Plant secondary metabolites against biotic stresses for sustainable crop protection.

Biotechnol Adv

January 2025

State Key Laboratory of Crop Gene Resources and Breeding/Key laboratory for Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, PR China; Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China. Electronic address:

Sustainable agriculture practices are indispensable for achieving a hunger-free world, especially as the global population continues to expand. Biotic stresses, such as pathogens, insects, and pests, severely threaten global food security and crop productivity. Traditional chemical pesticides, while effective, can lead to environmental degradation and increase pest resistance over time.

View Article and Find Full Text PDF

Cold stress strongly hinders plant growth and development. However, the molecular and physiological adaptive mechanisms of cold stress tolerance in plants are not well understood. Plants adopt several morpho-physiological changes to withstand cold stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!