Pleiotropic drug resistance (PDR) transporters are a group of membrane proteins belonging to the ABCG sub-family of ATP binding cassette (ABC) transporters. There is clear evidence for the involvement of plant ABC transporters in resistance to fungal and bacterial pathogens, but not in the biotic stress response to insect or herbivore attack. Here, we describe a PDR transporter, ABCG5/PDR5, from Nicotiana tabacum. GFP fusion and subcellular fractionation studies revealed that ABCG5/PDR5 is localized to the plasma membrane. Staining of transgenic plants expressing the GUS reporter gene under the control of the ABCG5/PDR5 transcription promoter and immunoblotting of wild-type plants showed that, under standard growth conditions, ABCG5/PDR5 is highly expressed in roots, stems and flowers, but is only expressed at marginal levels in leaves. Interestingly, ABCG5/PDR5 expression is induced in leaves by methyl jasmonate, wounding, pathogen infiltration, or herbivory by Manduca sexta. To address the physiological role of ABCG5/PDR5, N. tabacum plants silenced for the expression of ABCG5/PDR5 were obtained. No phenotypic modification was observed under standard conditions. However, a small increase in susceptibility to the fungus Fusarium oxysporum was observed. A stronger effect was observed in relation to herbivory: silenced plants allowed better growth and faster development of M. sexta larvae than wild-type plants, indicating an involvement of this PDR transporter in resistance to M. sexta herbivory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1365-313X.2012.05108.x | DOI Listing |
Expert Opin Drug Metab Toxicol
January 2025
EuroEspes Biomedical Research Center, International Center of Neuroscience and Genomic Medicine, Bergondo, Corunna, Spain.
Introduction: Genetic load influences the therapeutic response to conventional drugs in Alzheimer's disease (AD). Pharmacogenetics (PGx) is the best option to reduce drug-drug interactions and adverse drug reactions in patients undergoing polypharmacy regimens. However, there are important limitations that make it difficult to incorporate pharmacogenetics into routine clinical practice.
View Article and Find Full Text PDFThe Golgi apparatus is a critical organelle responsible for intracellular trafficking and signaling, orchestrating essential processes such as protein and lipid sorting . Dysregulation of its function has been implicated in various pathologies, including obesity, diabetes, and cancer, highlighting its importance as a potential therapeutic target. Despite this, the development of tools to selectively target the Golgi in specific cell types remain a significant unmet challenge in imaging and drug discovery.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
Background: Mounting evidence suggests that Parkinson's disease (PD) and inflammatory bowel disease (IBD) are closely associated and becoming global health burdens. However, the causal relationships and common pathogeneses between them are uncertain. Furthermore, they are uncurable.
View Article and Find Full Text PDFCommun Biol
January 2025
Institute for Stroke and Dementia Research (ISD), LMU University Hospital, LMU Munich, Munich, Germany.
Circulating cytokines orchestrate immune reactions and are promising drug targets for immune-mediated and inflammatory diseases. Exploring the genetic architecture of circulating cytokine levels could yield key insights into causal mediators of human disease. Here, we performed genome-wide association studies (GWAS) for 40 circulating cytokines in meta-analyses of 74,783 individuals.
View Article and Find Full Text PDFCommun Biol
January 2025
Obsidian Therapeutics, Cambridge, MA, USA.
Adoptive cell therapies (ACT) have shown reduced efficacy against solid tumor malignancies compared to hematologic malignancies, partly due to the immunosuppressive nature of the tumor microenvironment (TME). ACT efficacy may be enhanced with pleiotropic cytokines that remodel the TME; however, their expression needs to be tightly controlled to avoid systemic toxicities. Here we show T cells can be armored with membrane-bound cytokines with surface expression regulated using drug-responsive domains (DRDs) developed from the 260-amino acid protein human carbonic anhydrase 2 (CA2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!