Reversibility of prion misfolding: insights from constant-pH molecular dynamics simulations.

J Phys Chem B

Centro de Química e Bioquímica e Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.

Published: August 2012

The prion protein (PrP) is the cause of a group of diseases known as transmissible spongiform encephalopathies (TSEs). Creutzfeldt-Jakob disease and bovine spongiform encephalopathy are examples of TSEs. Although the normal form of PrP (PrP(C)) is monomeric and soluble, it can misfold into a pathogenic form (PrP(Sc)) that has a high content of β-structure and can aggregate forming amyloid fibrils. The mechanism of conversion of PrP(C) into PrP(Sc) is not known but different triggers have been proposed. It can be catalyzed by a PrP(Sc) sample, or it can be induced by an external factor, such as low pH. The pH effect on the structure of PrP was recently studied by computational methods [Campos et al. J. Phys. Chem. B 2010, 114, 12692-12700], and an evident trend of loss of helical structure was observed with pH decrease, together with a gain of β-structures. In particular, one simulation at pH 2 showed an evident misfolding transition. The main goal of the present work was to study the effects of a change in pH to 7 in several transient conformations of this simulation, in order to draw some conclusions about the reversibility of PrP misfolding. Although the most significant effect caused by the change of pH to 7 was a global stabilization of the protein structure, we could also observe that some conformational transitions induced by pH 2 were reversible in many of our simulations, namely those started from the early moments of the misfolding transition. This observation is in good agreement with experiments showing that, even at pH as low as 1.7, it is possible to revert the misfolding process [Bjorndahl et al. Biochemistry 2011, 50, 1162-1173].

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp3034837DOI Listing

Publication Analysis

Top Keywords

misfolding transition
8
misfolding
5
reversibility prion
4
prion misfolding
4
misfolding insights
4
insights constant-ph
4
constant-ph molecular
4
molecular dynamics
4
dynamics simulations
4
simulations prion
4

Similar Publications

Topological confinement by a membrane anchor suppresses phase separation into protein aggregates: Implications for prion diseases.

Proc Natl Acad Sci U S A

January 2025

Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany.

Protein misfolding and aggregation are a hallmark of various neurodegenerative disorders. However, the underlying mechanisms driving protein misfolding in the cellular context are incompletely understood. Here, we show that the two-dimensional confinement imposed by a membrane anchor stabilizes the native protein conformation and suppresses liquid-liquid phase separation (LLPS) and protein aggregation.

View Article and Find Full Text PDF

Free Energy-Based Refinement of DNA Force Field via Modification of Multiple Nonbonding Energy Terms.

J Chem Inf Model

December 2024

Department of Chemistry and Institute of Functional Materials, Pusan National University, Busan 46241, South Korea.

The amber-OL21 force field (ff) was developed to better describe noncanonical DNA, including Z-DNA. Despite its improvements for DNA simulations, this study found that OL21's scope of application was limited by embedded ff artifacts. In a benchmark set of seven DNA molecules, including two double-stranded DNAs transitioning between B- and Z-DNA and five single-stranded DNAs folding into mini-dumbbell or G-quadruplex structures, the free energy landscapes obtained using OL21 revealed several issues: Z-DNA was overly stabilized; misfolded states in mini-dumbbell DNAs were most stable; DNA GQ folding was consistently biased toward an antiparallel topology.

View Article and Find Full Text PDF

Multi-Site Red-Edge Excitation Shift Reveals the Residue-Specific Solvation Dynamics during the Native to Amyloid-like Transition of an Amyloidogenic Protein.

J Phys Chem B

January 2025

Physical and Materials Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India.

Changes in water-protein interactions are crucial for proteins to achieve functional and nonfunctional conformations during structural transitions by modulating local stability. Amyloid-like protein aggregates in deteriorating neurons are hallmarks of neurodegenerative disorders. These aggregates form through significant structural changes, transitioning from functional native conformations to supramolecular cross-β-sheet structures via misfolded and oligomeric intermediates in a multistep process.

View Article and Find Full Text PDF

Computational analysis of the alpha-2 domain of apolipoprotein B - 100, a potential triggering factor in LDL aggregation.

Biochim Biophys Acta Gen Subj

February 2025

Department of Chemistry, York College of the City University of New York, Jamaica, New York 11451, USA; PhD Programs in Chemistry and Biochemistry, Graduate Center of the City University of New York, New York 10016, USA. Electronic address:

Atherosclerosis, the major underlying cause of cardiovascular disease, is believed to arise from the accumulation of low-density lipoprotein (LDL) in the arterial subendothelial space, ultimately leading to plaque formation. It is proposed that the accumulation of LDL is linked to its intrinsic aggregation propensity. Although the native LDL is not prone to aggregation, LDL(-), an electronegative LDL characterized in the plasma, has been shown to prime LDL aggregation in a domino-like behavior similar to amyloidogenic proteins.

View Article and Find Full Text PDF

Understanding the biophysical basis of protein aggregation is important in biology because of the potential link to several misfolding diseases. Although experiments have shown that protein aggregates adopt a variety of morphologies, the dynamics of their formation are less well characterized. Here, we introduce a minimal model to explore the dependence of the aggregation dynamics on the structural and sequence features of the monomers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!