Azadirachta indica, used in antidiabetic herbal drugs, was reported to contain α-glucosidase inhibitor. Bioassay guided purification characterized the inhibitor as nimbidiol (a diterpenoid), present in root and stem-bark of the tree. Nimbidiol inhibited intestinal (mammalian) maltase-glucoamylase, sucrase-isomaltase, lactase, trehalase and fungal α-glucosidases. Nimbidiol showed a mixed competitive inhibition on intestinal carbohydrases. IC50, Ki and Ki' (µM) were 1.35 ± 0.12, 0.08 ± 0.01, 0.25 ± 0.11, respectively, for maltase-glucoamylase (maltotetraose as substrate). Nimbidiol was more potent inhibitor of isomaltase (IC50 0.85 ± 0.035 µM), lactase (IC50 20 ± 1.33 µM) and trehalase (IC50 30 ± 1.75 µM) than acarbose, voglibose, salacinol, kotalanol and mangiferin. Ki and Ki' values (µM) for intestinal sucrase were 0.7 ± 0.12 and 1.44 ± 0.65, respectively. Development of nimbidiol as an antidiabetic drug appears to be promising because of broad inhibition spectrum of intestinal glucosidases and easy synthesis of the molecule.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14756366.2012.694877DOI Listing

Publication Analysis

Top Keywords

nimbidiol potent
8
azadirachta indica
8
intestinal
5
nimbidiol
5
µm
5
characterization nimbidiol
4
potent intestinal
4
intestinal disaccharidase
4
disaccharidase glucoamylase
4
inhibitor
4

Similar Publications

Azadirachta indica, used in antidiabetic herbal drugs, was reported to contain α-glucosidase inhibitor. Bioassay guided purification characterized the inhibitor as nimbidiol (a diterpenoid), present in root and stem-bark of the tree. Nimbidiol inhibited intestinal (mammalian) maltase-glucoamylase, sucrase-isomaltase, lactase, trehalase and fungal α-glucosidases.

View Article and Find Full Text PDF

Natural catechol, quinone and quinone methide diterpenes with abietane (15-deoxyfuerstione, taxodione) and totarane (dispermone, 12,13-dihydroxy-8,11,13-totaratriene-6-one), and podocarpane (nimbidiol, deoxynimbidiol) skeletons were synthesized using ortho-oxidation of phenol with meta-chlorobenzoyl peroxide. Minimum inhibitory activities of these diterpenes and previously synthesized natural diterpenes were measured against methicillin-resistant Staphylococcus aureus (MRSA) and Propionibacterium acnes, which cause serious skin infection associated with acne. Abietaquinone methide and 8,11,13-totaratriene-12,13-diol showed potent activities against S.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!