Chenopodium ambrosioides is an invasive species, which has strong allelopathic effect on surrounding plants. In this study, the methods of soil culture and filter paper culture were adopted to simulate the eluviation and volatilization of the volatile oil from C. ambrosioides, respectively, and to investigate the allelopathy of the volatile oil on the lipid peroxidation and antioxidant enzyme activities of Vicia faba root tip cells, with the mechanisms of the induced tip cell apoptosis analyzed. At the early stage (24 h) of soil culture and filter paper culture, the superoxide dismutase, peroxidase and catalase activities of the tip cells decreased after an initial increase with the increasing dose of the volatile oil, and the malondialdehyde content of the tip cells increased with the increasing volatile oil dose and treated time. At the midterm (48 h) and later (72 h) stages of soil culture and filter paper culture, a typical DNA ladder strip appeared, suggesting that the volatile oil from C. ambrosioides could induce the apoptosis of the tip cells, and the apoptosis was dose- and time dependent. This study showed that the volatile oil from C. ambrosioides could act on its surrounding plants via eluviation and volatilization, making the lipid peroxidation of acceptor plants aggravated and the antioxidant enzyme activities of the plants inhibited, resulting in the oxidative damage and apoptosis of the plant root tip cells, and accordingly, the inhibition of the plant growth. Under soil culture, the root tip cells of V. faba had higher antioxidant enzyme activities and lesser DNA damage, suggesting that the volatile oil from C. ambrosioides via volatilization had stronger allelopathy on the growth of surrounding plants than via eluviation.
Download full-text PDF |
Source |
---|
Inflammopharmacology
January 2025
Department of Community Medicine, Vidhyadeep Homoeopathic Medical College and Research Centre, Vidhyadeep University, Anita, Surat, Gujarat, 394110, India.
Volatile oils (VOs), synonymously termed essential oils (EOs), are highly hydrophobic liquids obtained from aromatic plants, containing diverse organic compounds for example terpenes and terpenoids. These oils exhibit significant neuroprotective properties, containing antioxidant, anti-inflammatory, anti-apoptotic, glutamate activation, cholinesterase inhibitory action, and anti-protein aggregatory action, making them potential therapeutic agents in managing neurodegenerative diseases (NDs). VOs regulate glutamate activation, enhance synaptic plasticity, and inhibit oxidative stress through the stimulation of antioxidant enzymes.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agrotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Council of Scientific and Industrial Research, Post Box No. 6, Palampur, 176 061, HP, India.
Background: The rising costs of synthetic fertilizers highlight the need for eco-friendly alternatives to enhance essential oil production in aromatic plants. This study evaluated the effects of red algae seaweed extract [Solieria chordalis (C. Agardh) J.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemistry, Faculty of Science, Gonbad Kavous University, Gonbad Kavous, Iran.
A bright future lies ahead for the application of natural biocomposites in the food industry. In this research, edible biocomposite films were created using sodium caseinate (SC)-gum tragacanth (GT) and incorporating carum carvi seed essential oil (EO) as a nanoemulsion. Different ratios of oil were used as variables.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agronomy and Plant Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
The increasing trend of salinization of agricultural lands represents a great threat to the growth of major crops. Hence, shedding light on the salt-tolerance capabilities of three environment-resilient medicinal species from the Apiaceae, i.e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!