In a combined approach of phenotypic and genotypic characterization, 28 indigenous rhizobial isolates obtained from different chickpea growing regions in peninsular and northern India were analyzed for diversity. The field isolates were compared to two reference strains TAL620 and UPM-Ca142 representing M. ciceri and M. mediterraneum respectively. Phenotypic markers such as resistance to antibiotics, tolerance to salinity, temperature, pH, phosphate solubilization ability, growth rate and also symbiotic efficiency showed considerable diversity among rhizobial isolates. Their phenotypic patterns showed adaptations of rhizobial isolates to abiotic stresses such as heat and salinity. Two salt tolerant strains (1.5% NaCl by T1 and T4) with relatively high symbiotic efficiency and two P-solubilising strains (66.7 and 71 microg/ml by T2 and T5) were identified as potential bioinoculants. Molecular profiling by 16S ribosomal DNA Restriction Fragment Length Polymorphism (RFLP) revealed three clusters at 67% similarity level. Further, the isolates were differentiated at intraspecific level by 16S rRNA gene phylogeny. Results assigned all the chickpea rhizobial field isolates to belong to three different species of Mesorhizobium genus. 46% of the isolates grouped with Mesorhizobium loti and the rest were identified as M. ciceri and M. mediterraneum, the two species which have been formerly described as specific chickpea symbionts. This is the first report on characterization of chickpea nodulating rhizobia covering soils of both northern and peninsular India. The collection of isolates, diverse in terms of species and symbiotic effectiveness holds a vast pool of genetic material which can be effectively used to yield superior inoculant strains.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!