L-type calcium channel blockers like verapamil are used in the prophylaxis of migraine. However, their effect on the expression of CGRP in the trigeminal nucleus caudalis (TNC) is unknown. It is important because an earlier study had shown that olcegepant, a CGRP receptor antagonist, acts at the level of the trigeminal spinal nucleus rather than the trigeminal ganglia. Nimodipine was used in the present study as it crosses the blood-brain barrier. The objective of the study was to determine the pattern of expression of calcitonin gene-related peptide (CGRP) in the TNC after administration of nimodipine and/or morphine. Wistar rats were injected with saline, morphine, nimodipine or morphine + nimodipine for 14 days. Subsequently, the lowest part of the medulla oblongata containing the spinal nucleus was removed and processed for immunohistochemical localization of CGRP. The density of expression was quantified using Image J software. The results were statistically analyzed. CGRP expression was noted over the superficial part of the TNC, which decreased significantly after nimodipine administration. Conversely, morphine produced an up-regulation. The expression was unchanged with reference to saline in the morphine + nimodipine treated group. Decreased expression of CGRP in the trigeminal nucleus caudalis after nimodipine is being reported for the first time. Also, whether CGRP expression can be used as a marker for predicting the therapeutic efficacy of an anti-migraine drug is currently being investigated.
Download full-text PDF |
Source |
---|
Nat Commun
January 2025
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China.
Chronic allodynia stemming from peripheral stump neuromas can persist for extended periods, significantly compromising patients' quality of life. Conventional managements for nerve stumps have demonstrated limited effectiveness in ensuring their orderly termination. In this study, we present a spatially confined conduit strategy, designed to enhance the self-organization of regenerating nerves after truncation.
View Article and Find Full Text PDFLife Sci
December 2024
Department of Medical Research and Development, Research Division, Chang Gung Memorial Hospital at Linkou, Taoyuan 33305, Taiwan.
Aims: Chronic pain is a critical public health issue that severely impacts quality of life and poses significant treatment challenges, particularly due to the risk of adverse effects associated with pharmacological therapies. The search for effective non-invasive treatment alternatives has become increasingly relevant. Low-intensity focused ultrasound (LIFU) has been identified as an effective non-invasive strategy for pain management, although the underlying mechanism remains unclear.
View Article and Find Full Text PDFNanoscale
December 2024
Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai 264003, People's Republic of China.
As a common malignancy symptom, cancer pain significantly affects patients' quality of life. Approximately 60%-90% of patients with advanced cancer experience debilitating pain. Therefore, a comprehensive treatment system that combines cancer pain suppression and tumor treatment could provide significant benefits for these patients.
View Article and Find Full Text PDFJBMR Plus
January 2025
University of Texas, Southwestern Medical Center, Dallas, TX 75080, United States.
Recent studies have linked pain and the resultant nociception-induced neural inflammation (NINI) to trauma-induced heterotopic ossification (THO). It is postulated that nociception at the injury site stimulates the transient receptor potential vanilloid-1 (the transient receptor potential cation channel subfamily V member 1) receptors on sensory nerves within the injured tissues resulting in the expression of neuroinflammatory peptides, substance P (SP), and calcitonin gene-related peptide (CGRP). Additionally, BMP-2 released from fractured bones and soft tissue injury also selectively activates TRVP1 receptors, resulting in the release of SP and CGRP and causing neuroinflammation and degranulation of mast cells causing the breakdown the blood-nerve barrier (BNB), leading to release of neural crest derived progenitor cells (NCDPCs) into the injured tissue.
View Article and Find Full Text PDFNeurol Genet
December 2024
From the Division of Preventive Medicine (D.I.C., Y.G., P.M.R.), Brigham and Women's Hospital and Harvard Medical School; and the Clinical and Translational Epidemiology Unit (A.T.C., K.S.) and Division of Gastroenterology (A.T.C., K.S.), Massachusetts General Hospital, and Harvard Medical School, Boston, MA.
Background And Objectives: Migraine is strongly comorbid with irritable bowel syndrome (IBS), one of several gastrointestinal (GI) conditions that are distinguished by symptomatic profiles that are partly overlapping. Potential shared mechanisms of migraine and the GI conditions were investigated by assessing shared genetics on a genome-wide basis.
Methods: Analyses leveraged genome-wide summary statistics from large-scale genetic studies for migraine, including by aura status, IBS, peptic ulcer disease (PUD), gastrointestinal reflux (GERD), functional dyspepsia (FD), diverticular disease (DD), and the immune-related inflammatory bowel disease (IBD) or its constituents, ulcerative colitis (UC) and Crohn disease (CD).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!