Background: Phlebotomine sand flies are blood-sucking insects transmitting Leishmania parasites. In bitten hosts, sand fly saliva elicits specific immune response and the humoral immunity was shown to reflect the intensity of sand fly exposure. Thus, anti-saliva antibodies were suggested as the potential risk marker of Leishmania transmission. In this study, we examined the long-term kinetics and persistence of anti-Phlebotomus papatasi saliva antibody response in BALB/c and C57BL/6 mice. We also tested the reactivity of mice sera with P. papatasi salivary antigens and with the recombinant proteins.

Methodology/principal Findings: Sera of BALB/c and C57BL/6 mice experimentally bitten by Phlebotomus papatasi were tested by ELISA for the presence of anti-saliva IgE, IgG and its subclasses. We detected a significant increase of specific IgG and IgG1 in both mice strains and IgG2b in BALB/c mice that positively correlated with the number of blood-fed P. papatasi females. Using western blot and mass spectrometry we identified the major P. papatasi antigens as Yellow-related proteins, D7-related proteins, antigen 5-related proteins and SP-15-like proteins. We therefore tested the reactivity of mice sera with four P. papatasi recombinant proteins coding for most of these potential antigens (PpSP44, PpSP42, PpSP30, and PpSP28). Each mouse serum reacted with at least one of the recombinant protein tested, although none of the recombinant proteins were recognized by all sera.

Conclusions: Our data confirmed the concept of using anti-sand fly saliva antibodies as a marker of sand fly exposure in Phlebotomus papatasi-mice model. As screening of specific antibodies is limited by the availability of salivary gland homogenate, utilization of recombinant proteins in such studies would be beneficial. Our present work demonstrates the feasibility of this implementation. A combination of recombinant salivary proteins is recommended for evaluation of intensity of sand fly exposure in endemic areas and for estimation of risk of Leishmania transmission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3393673PMC
http://dx.doi.org/10.1371/journal.pntd.0001719DOI Listing

Publication Analysis

Top Keywords

sand fly
16
balb/c c57bl/6
12
c57bl/6 mice
12
fly exposure
12
recombinant proteins
12
antibody response
8
response balb/c
8
bitten phlebotomus
8
phlebotomus papatasi
8
fly saliva
8

Similar Publications

Non-compaction cardiomyopathy (NCCM) or spongy myocardium is a rare type of congenital cardiomyopathy. Visceral leishmaniasis is a protozoal disease caused by and transmitted by the bite of female sand-fly species of , which is common in tropical areas like Sudan. We report a 6-year-old female, presented with a fever of unknown origin, weight loss, anemia that necessitated multiple blood transfusions and had hepatosplenomegaly.

View Article and Find Full Text PDF

Epidemiology and Ecology of Toscana Virus Infection and Its Global Risk Distribution.

Viruses

December 2024

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Science, Beijing 100071, China.

Toscana virus (TOSV), a member of the genus transmitted by sandflies, is acknowledged for its capacity to cause neurological infections and is widely distributed across Mediterranean countries. The potential geographic distribution and risk to the human population remained obscure due to its neglected nature. We searched PubMed and Web of Science for articles published between 1 January 1971 and 30 June 2023 to extract data on TOSV detection in vectors, vertebrates and humans, clinical information of human patients, as well as the occurrence of two identified sandfly vectors for TOSV.

View Article and Find Full Text PDF

, , and : An Emerging Triad of Vector-Borne Co-Infections?

Pathogens

January 2025

ANSES, INRAE, Ecole Nationale Vétérinaire d'Alfort, UMR BIPAR, Laboratoire de Santé Animale, F-94700 Maisons-Alfort, France.

Canine leishmaniosis (CanL), caused by the protozoan and transmitted primarily by phlebotomine sand flies, poses significant challenges for zoonotic disease management [...

View Article and Find Full Text PDF

Study of the Influence of Desert Sand-Mineral Admixture on the Abrasion Resistance of Concrete.

Materials (Basel)

January 2025

College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China.

The incorporation of desert sand-mineral admixture improves the abrasion resistance of concrete. To prolong the service life of assembled concrete channels and mitigate the depletion of river sand resources, the effects of fly ash (FA), silica fume (SF), desert sand (DS), and basalt fiber (BF) on the mechanical properties and the abrasion resistance of concrete were examined, alongside an analysis of their microstructures to elucidate the underlying mechanisms of influence. The results indicated that the abrasion resistance strength of concrete mixed with 10% FA and 0.

View Article and Find Full Text PDF

Occurrence of Leishmania spp. in phlebotomine sand flies and dogs in Guelma region, North-eastern Algeria.

Vet Parasitol Reg Stud Reports

January 2025

Department of Veterinary Medicine, University of Bari, Valenzano, Bari, Italy; Department of Veterinary Clinical Sciences, City University of Hong Kong, Hong Kong. Electronic address:

Leishmania spp. are sand fly-borne parasitic protozoa of worldwide distribution that may severely affect the health and welfare of dogs as well as of other mammalian species, including humans. Algeria is among the most affected countries, counting several cases of Leishmania infantum infection in humans and dogs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!