Interface tailoring represents a route for integrating complex functions in systems and materials. Although it is ubiquitous in biological systems--e.g., in membranes--synthetic attempts have not yet reached the same level of sophistication. Here, we report on the fabrication of an organic field-effect transistor featuring dual-gate response. Alongside the electric control through the gate electrode, we incorporated photoresponsive nanostructures in the polymeric semiconductor via blending, thereby providing optical switching ability to the device. In particular, we mixed poly(3-hexylthiophene) with gold nanoparticles (AuNP) coated with a chemisorbed azobenzene-based self-assembled monolayer, acting as traps for the charges in the device. The light-induced isomerization between the trans and cis states of the azobenzene molecules coating the AuNP induces a variation of the tunneling barrier, which controls the efficiency of the charge trapping/detrapping process within the semiconducting film. Our approach offers unique solutions to digital commuting between optical and electric signals.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411947 | PMC |
http://dx.doi.org/10.1073/pnas.1203848109 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Chandra Family Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 78712, United States.
A device architecture based on heterostructure WSe/organic semiconductor field-effect transistors (FETs) is demonstrated in which ambipolar conduction is virtually eliminated, resulting in essentially unipolar FETs realized from an ambipolar semiconductor. For p-channel FETs, an electron-accepting organic semiconductor such as hexadecafluorocopperphthalocyanine (FCuPc) is used to form a heterolayer on top of WSe to effectively trap any undesirable electron currents. For n-channel FETs, a hole-accepting organic semiconductor such as pentacene is used to reduce the hole currents without affecting the electron currents.
View Article and Find Full Text PDFChemistry
January 2025
Southern University of Science and Technology, Chemistry, 1088 Xueyuan Blvd., Xili, Nanshan District, 518055, Shenzhen, CHINA.
Poly(p-phenylenevinylene) (PPV) is a classic semiconducting π-conjugated polymers with outstanding optical and electronic properties, which shows important applications in the fields of optoelectronic, such as organic light-emitting diodes (OLEDs), organic solar cells (OSCs), and organic field-effect transistors (OFETs). In the working process of the device, the microstate of PPV decides its property. Therefore, it is significant to achieve ordered morphologies based on PPV at micro scale.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland.
The development of stable and tunable polycyclic aromatic compounds (PACs) is crucial for the advancement of organic optoelectronics. Conventional PACs, such as acenes, often suffer from poor stability due to photooxidation and oligomerization, which are linked to their frontier molecular orbital energy levels. To address these limitations, we designed and synthesized a new class of π-expanded indoloindolizines by merging indole and indolizine moieties into a single polycyclic framework.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Conjugated polymers have attracted extensive attention as semiconducting materials in wearable and flexible electronics. In this study, we utilize atom-economical Knoevenagel reaction to construct two conjugated polymers, PTDPP-CNTT and PFDPP-CNTT, based on dialdehyde-thiophene/furan-flanked diketopyrrolopyrrole (DPP) and 2,2'-(thieno[3,2-b]thiophene-2,5-diyl)diacetonitrile (CNTT). The resulting polymers exhibited suitable highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO) energy levels, small bandgaps, and broad UV-vis-NIR absorptions (≈400-1000 nm), endowing them with photothermal and balanced ambipolar semiconducting properties with hole and electron mobilities over 10 cmVs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Oxford University: University of Oxford, Department of Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!