Cyclic di-GMP (c-di-GMP) is a second messenger molecule that regulates the transition between sessile and motile lifestyles in bacteria. Bacteria often encode multiple diguanylate cyclase (DGC) and phosphodiesterase (PDE) enzymes that produce and degrade c-di-GMP, respectively. Because of multiple inputs into the c-di-GMP-signaling network, it is unclear whether this system functions via high or low specificity. High-specificity signaling is characterized by individual DGCs or PDEs that are specifically associated with downstream c-di-GMP-mediated responses. In contrast, low-specificity signaling is characterized by DGCs or PDEs that modulate a general signal pool, which, in turn, controls a global c-di-GMP-mediated response. To determine whether c-di-GMP functions via high or low specificity in Vibrio cholerae, we correlated the in vivo c-di-GMP concentration generated by seven DGCs, each expressed at eight different levels, to the c-di-GMP-mediated induction of biofilm formation and transcription. There was no correlation between total intracellular c-di-GMP levels and biofilm formation or gene expression when considering all states. However, individual DGCs showed a significant correlation between c-di-GMP production and c-di-GMP-mediated responses. Moreover, the rate of phenotypic change versus c-di-GMP concentration was significantly different between DGCs, suggesting that bacteria can optimize phenotypic output to c-di-GMP levels via expression or activation of specific DGCs. Our results conclusively demonstrate that c-di-GMP does not function via a simple, low-specificity signaling pathway in V. cholerae.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411991 | PMC |
http://dx.doi.org/10.1073/pnas.1115663109 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
Butenyl-spinosyn, derived from Saccharopolyspora pogona, is a broad-spectrum and effective bioinsecticide. However, the regulatory mechanism affecting butenyl-spinosyn synthesis has not been fully elucidated, which hindered the improvement of production. Here, a high-production strain S.
View Article and Find Full Text PDFBioorg Med Chem Lett
January 2025
Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China. Electronic address:
Cyclic diguanosine monophosphate (c-di-GMP) is the key second messenger regulating bacterial biofilm formation related genes. Several c-di-GMP analogues have demonstrated biofilm inhibition activity. In this study, ribose-phosphate macrocyclic skeleton containing 1'-azido groups was constructed, and CDN analogues were prepared via click chemistry.
View Article and Find Full Text PDFmBio
January 2025
State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
As a universal language across the bacterial kingdom, the quorum sensing signal autoinducer-2 (AI-2) can coordinate many bacterial group behaviors. However, unknown AI-2 receptors in bacteria may be more than what has been discovered so far, and there are still many unknown functions for this signal waiting to be explored. Here, we have identified a membrane-bound histidine kinase of the pathogenic bacterium , AsrK, as a receptor that specifically detects AI-2 under low boron conditions.
View Article and Find Full Text PDFVet Res
January 2025
National and Regional Joint Engineering Laboratory for Medicament of Zoonoses Prevention and Control, Key Laboratory of Zoonoses, Ministry of Agriculture, Key Laboratory of Zoonoses Prevention and Control of Guangdong Province, Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
S. Typhimurium is a significant zoonotic pathogen, and its survival and transmission rely on stress resistance and virulence factors. Therefore, identifying key regulatory elements is crucial for preventing and controlling S.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
January 2025
Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Biológica "Ranwel Caputto", Córdoba, Argentina.
Biofilms are critical in the persistence of Pseudomonas aeruginosa infections, particularly in cystic fibrosis patients. This study explores the adaptive mechanisms behind the phenotypic switching between Small Colony Variants (SCVs) and revertant states in P. aeruginosa biofilms, emphasizing hypermutability due to Mismatch Repair System (MRS) deficiencies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!