AI Article Synopsis

  • Malignant glioma is a highly aggressive brain tumor that is typically incurable, with current PI3K inhibitors mainly blocking cell growth rather than causing cell death.
  • Researchers discovered that targeting specific protein kinases, particularly CDK1/2, can enhance the effectiveness of PI3K inhibitors, promoting apoptosis in glioma cells.
  • The combination of the CDK inhibitor roscovitine and the PI3K inhibitor PIK-90 showed promising results in preclinical tests, leading to cell death in glioblastoma models and providing a basis for future clinical trials.

Article Abstract

Malignant glioma, the most common primary brain tumor, is generally incurable. Although phosphatidylinositol-3-kinase (PI3K) signaling features prominently in glioma, inhibitors generally block proliferation rather than induce apoptosis. Starting with an inhibitor of both lipid and protein kinases that induced prominent apoptosis and that failed early clinical development because of its broad target profile and overall toxicity, we identified protein kinase targets, the blockade of which showed selective synthetic lethality when combined with PI3K inhibitors. Prioritizing protein kinase targets for which there are clinical inhibitors, we demonstrate that cyclin-dependent kinase (CDK)1/2 inhibitors, siRNAs against CDK1/2, and the clinical CDK1/2 inhibitor roscovitine all cooperated with the PI3K inhibitor PIK-90, blocking the antiapoptotic protein Survivin and driving cell death. In addition, overexpression of CDKs partially blocked some of the apoptosis caused by PIK-75. Roscovitine and PIK-90, in combination, were well tolerated in vivo and acted in a synthetic-lethal manner to induce apoptosis in human glioblastoma xenografts. We also tested clinical Akt and CDK inhibitors, demonstrating induction of apoptosis in vitro and providing a preclinical rationale to test this combination therapy in patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3411950PMC
http://dx.doi.org/10.1073/pnas.1202492109DOI Listing

Publication Analysis

Top Keywords

synthetic lethality
8
malignant glioma
8
induce apoptosis
8
protein kinase
8
kinase targets
8
inhibitors
5
apoptosis
5
dual blockade
4
blockade lipid
4
lipid cyclin-dependent
4

Similar Publications

Antiangiogenic drugs may cause vascular normalization and correct hypoxia in tumors, shifting cells to mitochondrial respiration as the primary source of energy. In turn, the addition of an inhibitor of mitochondrial respiration to antiangiogenic therapy holds potential to induce synthetic lethality. This study evaluated the mitochondrial inhibitor ME-344 in combination with bevacizumab in patients with refractory metastatic colorectal cancer (mCRC).

View Article and Find Full Text PDF

PARP (poly-ADP ribose polymerase) has received widespread attention in cancer treatment. Research has shown that PARP plays a crucial role in DNA damage repair and has become a popular target for drug design. Based on the mechanism of "synthetic lethality", multiple PARPis (PARP inhibitors) have been launched for the treatment of BRCA deficient tumors.

View Article and Find Full Text PDF

The advent of poly(ADP-ribose) polymerase (PARP) inhibitors has resulted in a significant paradigm shift in ovarian cancer treatment. Niraparib, a potent PARP inhibitor, has demonstrated substantial efficacy in both first-line and recurrent disease settings. By targeting homologous recombination DNA repair, a pathway frequently disrupted in ovarian cancer, particularly in the context of BRCA mutations, niraparib induces synthetic lethality.

View Article and Find Full Text PDF

PARP inhibitors (PARPi) have received regulatory approval for the treatment of several tumors, including prostate cancer (PCa), and demonstrate remarkable results in the treatment of castration-resistant prostate cancer (CRPC) patients characterized by defects in homologous recombination repair (HRR) genes. Preclinical studies showed that DNA repair genes (DRG) other than HRR genes may have therapeutic value in the context of PARPi. To this end, we performed multiple CRISPR/Cas9 screens in PCa cell lines using a custom sgRNA library targeting DRG combined with PARPi treatment.

View Article and Find Full Text PDF

Anaplastic thyroid cancer (ATC) is the most lethal tumor arising from thyroid follicular epithelium. Lenvatinib is an off-label use option for ATC patients in many countries but an approved prescription in Japan. However, lenvatinib resistance is a substantial clinical challenge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!