Estrogen (E(2)) regulates spermatogenesis, yet its direct target genes have not been identified in the testis. Here, we cloned the proximal 5' flanking region of the mouse fatty acid amide hydrolase (faah) gene upstream of the luciferase reporter gene, and demonstrated its promoter activity and E(2) inducibility in primary mouse Sertoli cells. Specific mutations in the E(2) response elements (ERE) of the faah gene showed that two proximal ERE sequences (ERE2/3) are essential for E(2)-induced transcription, and chromatin immunoprecipitation experiments showed that E(2) induced estrogen receptor β binding at ERE2/3 sites in the faah promoter in vivo. Moreover, the histone demethylase LSD1 was found to be associated with ERE2/3 sites and to play a role in mediating E(2) induction of FAAH expression. E(2) induced epigenetic modifications at the faah proximal promoter compatible with transcriptional activation by remarkably decreasing methylation of both DNA at CpG site and histone H3 at lysine 9. Finally, FAAH silencing abolished E(2) protection against apoptosis induced by the FAAH substrate anandamide. Taken together, our results identify FAAH as the first direct target of E(2).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11114663PMC
http://dx.doi.org/10.1007/s00018-012-1074-6DOI Listing

Publication Analysis

Top Keywords

faah gene
12
direct target
12
faah
9
histone demethylase
8
demethylase lsd1
8
ere2/3 sites
8
gene direct
4
target estrogen
4
estrogen testis
4
testis role
4

Similar Publications

Objective: The study aims to construct a prognostic signature to detect the molecular interaction between the fatty acid metabolism and the progression of endometrial cancer.

Materials And Methods: A total of 309 fatty acid metabolism relative genes were analyzed in the endometrial cancer cohort from The Cancer Genome Atlas. Dataset GSE216872 was applied for external validation.

View Article and Find Full Text PDF

Due to the increasing prevalence of depressive and anxiety disorders in youth, a growing interest in the endocannabinoid system (ECS) as a potential alternative target point for treatment arised. This study aimed to investigate whether chronic administration of escitalopram reverses behavioral changes induced by maternal separation in male adolescent Wistar rats and explore the corresponding neurochemical changes in the ECS. The pups were separated from their dams for 360 min daily from postnatal day (PND) 2 until PND 15.

View Article and Find Full Text PDF

Aim: To identify some novel fatty acid hydrolase (FAAH) inhibitors that may contribute to the treatment of Alzheimer's disease (AD).

Methods: In-silico pharmacophore modelling including ligand-based pharmacophore modelling, virtual screening, molecular docking, molecular dynamics modelling, density functional theory and in-silico pharmacokinetics and toxicological studies were employed for the retrieving of novel FAAH inhibitors. Further, these compounds were evaluated for FAAH inhibitory activity using an in vitro enzymatic assay, and later, an in vivo streptozotocin (STZ)-induced AD model was examined in mice.

View Article and Find Full Text PDF

Modulation of the endocannabinoid system by (S)-ketamine in an animal model of depression.

Pharmacol Res

January 2025

Department of Biomedicine, Aarhus University, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Denmark. Electronic address:

Ketamine (KET) is recognized as rapid-acting antidepressant, but its mechanisms of action remain elusive. Considering the role of endocannabinoids (eCB) in stress and depression, we investigated if S-KET antidepressant effects involve the regulation of the eCB system using an established rat model of depression based on selective breeding: the Flinders Sensitive Line (FSL) and their controls, the Flinders Resistant Line (FRL). S-KET (15 mg/kg) effects were assessed in rats exposed to the open field and forced swimming test (FST), followed by analysis of the eCB signaling in the rat prefrontal cortex (PFC), a brain region involved in depression neurobiology.

View Article and Find Full Text PDF

Drug repurposing opportunities for breast cancer and seven common subtypes.

J Steroid Biochem Mol Biol

February 2025

Department of Breast Surgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China; The School of Clinical Medicine, Fujian Medical University, Fuzhou, China. Electronic address:

Breast cancer is a substantial global health problem, and drug repurposing provides novel opportunities to address the urgent need for therapeutics. According to significant Mendelian randomization (MR) results, we identified 26 genes for overall breast cancer, 25 genes for ER+ breast cancer and 4 genes (CASP8, KCNN4, MYLK4, TNNT3) for ER- breast cancer. In order to explore the differences between 5 intrinsic subtypes, we found 29 actionable druggable genes for Luminal A breast cancer, 2 genes (IGF2 and TNNT3) for Luminal B breast cancer, 1 gene (FAAH) for Luminal B HER2 negative breast cancer, and 3 genes (CASP8, KCNN4, and TP53) for triple-negative breast cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!