Oligodendroglia support axon survival and function through mechanisms independent of myelination, and their dysfunction leads to axon degeneration in several diseases. The cause of this degeneration has not been determined, but lack of energy metabolites such as glucose or lactate has been proposed. Lactate is transported exclusively by monocarboxylate transporters, and changes to these transporters alter lactate production and use. Here we show that the most abundant lactate transporter in the central nervous system, monocarboxylate transporter 1 (MCT1, also known as SLC16A1), is highly enriched within oligodendroglia and that disruption of this transporter produces axon damage and neuron loss in animal and cell culture models. In addition, this same transporter is reduced in patients with, and in mouse models of, amyotrophic lateral sclerosis, suggesting a role for oligodendroglial MCT1 in pathogenesis. The role of oligodendroglia in axon function and neuron survival has been elusive; this study defines a new fundamental mechanism by which oligodendroglia support neurons and axons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3408792PMC
http://dx.doi.org/10.1038/nature11314DOI Listing

Publication Analysis

Top Keywords

oligodendroglia support
8
oligodendroglia
5
oligodendroglia metabolically
4
metabolically support
4
support axons
4
axons contribute
4
contribute neurodegeneration
4
neurodegeneration oligodendroglia
4
axon
4
support axon
4

Similar Publications

Targeting Remyelination in Spinal Cord Injury: Insights and Emerging Therapeutic Strategies.

CNS Neurosci Ther

December 2024

Central Laboratory of The Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, China.

Article Synopsis
  • Spinal cord injury (SCI) is a major neurological disorder causing serious motor, sensory, and autonomic issues, primarily due to poor axon regeneration and remyelination.
  • Recent research highlights new therapeutic strategies that target key molecules and pathways to enhance myelin repair in SCI, using both lab and animal studies.
  • The review emphasizes the challenges in applying these findings to clinical settings, focusing on safety and delivery methods, while positing targeted remyelination therapies as a hopeful treatment approach for SCI.
View Article and Find Full Text PDF

Evidence that myelin repair is crucial for functional recovery in multiple sclerosis (MS) led to the identification of bexarotene (BXT). This clinically promising remyelinating agent activates multiple nuclear hormone receptor subtypes implicated in myelin repair. However, BXT produces unacceptable hyperlipidemia.

View Article and Find Full Text PDF

Myelin is essential in the nervous system of mammals. As the location and degree of myelin loss can reflect varied pathophysiological status, noninvasive measurement of myelin is of high importance. The magnetic resonance imaging (MRI) technique of myelin water fraction (MWF) derived from multi-echo gradient echo (MGRE) sequence is a promising tool for the quantification of myelin content due to the low specific absorption rate (SAR) compared with the spin-echo sequence, time efficiency, and wide availability.

View Article and Find Full Text PDF

Multiple sclerosis (MS) is a chronic neurodegenerative disorder involving demyelination. The cuprizone model is commonly used to study MS by inducing oligodendrocyte stress and demyelination. The subventricular zone (SVZ) plays a key role in neurogenesis, while the neuronal/glial antigen 2 (NG2) is a marker for immature glial cells, involved in oligodendrocyte differentiation.

View Article and Find Full Text PDF

Neurodegeneration is preeminent in many neurological diseases, and still a major burden we fail to manage in patient's care. Its pathogenesis is complicated, intricate, and far from being completely understood. Taking multiple sclerosis as an example, we propose that neurodegeneration is neither a cause nor a consequence by itself.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!