A micro fluorescent analysis system is proposed using silicon micromachining. GaN blue light-emitting diode (LED) monolithically integrated on a silicon substrate is used as a light source for the fluorescent analysis system. The blue light suits the excitation of several dyes used commonly in fluorescent analysis. Silicon photodiode (Si-PD) that matches the visible and near infrared fluorescent wavelengths of dyes is integrated on a silicon substrate. Polydimethylsiloxane (PDMS) micro-channels are also stacked for flowing dye-sensitized liquid. Therefore, the proposed system is an integrated system that can be composed on a silicon platform, i.e. a bottom layer of Si-PD, a middle layer of GaN-LED on silicon substrate and a top layer of micro PDMS channel. An aperture is opened into the GaN-LED layer by deep reactive ion etching to create a ring-shaped GaN-LED and a through-hole for detection. The light from the ring-shaped GaN-LED in the middle layer excites the dye-sensitized liquid in the top micro-channel layer. The fluorescence emitted from dye is detected by the Si-PD on the bottom layer at an angle larger than 90 degrees from the direction of excitation. Therefore, the detection optics consist basically of a dark-field illumination optical system. In order to evaluate the performance of the integrated system, fluorescence of fluorescein isothiocyanate (FITC) solution flowing in the micro channel is measured. From the measurement, the noise, sensitivity and limit of detection in the fabricated system are evaluated for FITC dye to be 0.57 pA, 1.21 pA μM(-1) and 469 nM, respectively. From these results, a compact fluorescence analysis system is demonstrated.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c2lc40178aDOI Listing

Publication Analysis

Top Keywords

fluorescent analysis
16
analysis system
16
silicon substrate
12
system
9
micro fluorescent
8
silicon platform
8
integrated silicon
8
dye-sensitized liquid
8
integrated system
8
bottom layer
8

Similar Publications

When a test substance is poorly water-soluble, it can be adsorbed onto silica gel to facilitate dispersibility in a ready biodegradability test. To uniformly adsorb the test substance onto silica gel, the substance is dissolved in a solvent and then mixed with the silica gel. It is desirable for the solvent to completely evaporate afterward.

View Article and Find Full Text PDF

Revisiting the female germline cell development.

Front Plant Sci

January 2025

College of Life Sciences, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.

The formation of the female germline is the fundamental process in most flowering plants' sexual reproduction. In , only one somatic cell obtains the female germline fate, and this process is regulated by different pathways. Megaspore mother cell (MMC) is the first female germline, and understanding MMC development is essential for comprehending the complex mechanisms of plant reproduction processes.

View Article and Find Full Text PDF

Linear IgA bullous dermatosis (LABD) is a rare subepidermal blistering disorder characterized by the presence of linear IgA deposits at the basement membrane zone (BMZ) by direct immunofluorescence (DIF). This entity was first described by Chorzelski and Jablonska from Warsaw Center of Bullous Diseases, Poland. The disease affects children and adults, whereby they differ in terms of clinical picture and course.

View Article and Find Full Text PDF

Autoimmune cerebellar ataxia (ACA) is a cerebellar syndrome induced by autoimmune reactions and its onset is induced by malignant tumors, prodromic infection, and gluten allergy. Its clinical symptoms include gait disorder, limb ataxia, dysarthria, and dysphagia. According to , the diagnosis of ACA is based on the following points: 1.

View Article and Find Full Text PDF

Deciphering cellular complexity: advances and future directions in single-cell protein analysis.

Front Bioeng Biotechnol

January 2025

Yunnan Key Laboratory of Cell Metabolism and Diseases, Yunnan University, Kunming, China.

Single-cell protein analysis has emerged as a powerful tool for understanding cellular heterogeneity and deciphering the complex mechanisms governing cellular function and fate. This review provides a comprehensive examination of the latest methodologies, including sophisticated cell isolation techniques (Fluorescence-Activated Cell Sorting (FACS), Magnetic-Activated Cell Sorting (MACS), Laser Capture Microdissection (LCM), manual cell picking, and microfluidics) and advanced approaches for protein profiling and protein-protein interaction analysis. The unique strengths, limitations, and opportunities of each method are discussed, along with their contributions to unraveling gene regulatory networks, cellular states, and disease mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!