AI Article Synopsis

  • Misfolding and aggregation of the huntingtin protein is crucial in Huntington disease, but the specific structure of these aggregates and the misfolding process are not well understood.
  • The study used advanced techniques (spin labeling and EPR spectroscopy) to analyze the structure of the huntingtin exon 1 (HDx1) protein, particularly focusing on the behavior of its polyglutamine (polyQ) region during aggregation.
  • Findings reveal that while the N terminus of HDx1 becomes structured and interacts closely with other molecules, the C-terminal domain remains dynamic and less organized, suggesting different roles in the formation of protein fibrils associated with Huntington disease.

Article Abstract

Misfolding and aggregation of huntingtin is one of the hallmarks of Huntington disease, but the overall structure of these aggregates and the mechanisms by which huntingtin misfolds remain poorly understood. Here we used site-directed spin labeling and electron paramagnetic resonance (EPR) spectroscopy to study the structural features of huntingtin exon 1 (HDx1) containing 46 glutamine residues in its polyglutamine (polyQ) region. Despite some residual structuring in the N terminus, we find that soluble HDx1 is highly dynamic. Upon aggregation, the polyQ domain becomes strongly immobilized indicating significant tertiary or quaternary packing interactions. Analysis of spin-spin interactions does not show the close contact between same residues that is characteristic of the parallel, in-register structure commonly found in amyloids. Nevertheless, the same residues are still within 20 Å of each other, suggesting that polyQ domains from different molecules come into proximity in the fibrils. The N terminus has previously been found to take up a helical structure in fibrils. We find that this domain not only becomes structured, but that it also engages in tertiary or quaternary packing interactions. The existence of spin-spin interactions in this region suggests that such contacts could be made between N-terminal domains from different molecules. In contrast, the C-terminal domain is dynamic, contains polyproline II structure, and lacks pronounced packing interactions. This region must be facing away from the core of the fibrils. Collectively, these data provide new constraints for building structural models of HDx1 fibrils.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3442508PMC
http://dx.doi.org/10.1074/jbc.M112.353839DOI Listing

Publication Analysis

Top Keywords

packing interactions
12
structural features
8
tertiary quaternary
8
quaternary packing
8
spin-spin interactions
8
domains molecules
8
interactions region
8
fibrils
5
interactions
5
domain
4

Similar Publications

Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.

View Article and Find Full Text PDF

Rationally manipulating molecular planarity to improve molar absorptivity, NIR-II brightness, and photothermal effect for tumor phototheranostics.

Biomaterials

January 2025

Lab of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University & International Joint Research Center for Advanced Medical Imaging and Intelligent Diagnosis and Treatment, Xi'an, Shaanxi, 710126, China. Electronic address:

The secondary near-infrared region (NIR-II) fluorescence imaging-guided photothermal therapy (PTT) offers a noninvasive and light-controllable treatment option for deep-seated cancers. However, the development of NIR-II photothermal agents (NIR-II PTAs) that possess the desired properties of high molar absorption coefficient (ε), fluorescence quantum yield (QY), and photothermal conversion efficiency (PCE) remain a challenge due to the contradiction between radiative and nonradiative processes. Herein, we propose a novel side-chain heteroatom substitution engineering strategy to simultaneously enhance ε, QY, and PCE by modifying the molecular planarity.

View Article and Find Full Text PDF

The side-chain directions in nonfullerene acceptors (NFAs) strongly influence the intermolecular interactions in NFAs; however, the influence of these side chains on the morphologies and charge carrier dynamics of Y6-based acceptors remains underexplored. In this study, we synthesize four distinct Y6-based acceptors, i.e.

View Article and Find Full Text PDF

The organic semiconductor Y6 has been extensively used as an acceptor in organic photovoltaic devices, yielding high efficiencies. Its unique properties include a high refractive index, intrinsic exciton dissociation, and barrierless charge generation in bulk heterojunctions. However, the direct impact of the crystal packing morphology on the photophysics of Y6 has remained elusive, hindering further development of heterojunction and homojunction devices.

View Article and Find Full Text PDF

Retention mechanism in slalom chromatography: Perspectives on the characterization of large DNA and RNA biopolymers in cell and gene therapy.

J Chromatogr A

January 2025

Waters Corporation, Instrument/Core Research/Fundamental, Milford, MA, 01757, USA. Electronic address:

Significant progress has been made in the last two decades in producing small (<2μm), high-purity, and low-adsorption particles, columns and system hardware, for ultra-high pressure liquid chromatography (UHPLC). Simultaneously, the recent rapid expansion of cell and gene therapies for treating diseases necessitates novel analytical technologies for analyzing large (>2 kbp) plasmid double-stranded (ds) DNA (which encodes for the in vitro transcription (IVT) of single-stranded (ss) mRNA therapeutics) and dsRNAs (related to IVT production impurities) biopolymers. In this context, slalom chromatography (SC), a retention mode co-discovered in 1988, is being revitalized using the most advanced column technologies for improved determination of the critical quality attributes (CQAs) of such new therapeutics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!