Previous studies have demonstrated that Arabidopsis thaliana BBX32 (AtBBX32) represses light signaling in A. thaliana and that expression of AtBBX32 in soybean increases grain yield in multiple locations and multiyear field trials. The BBX32 protein is a member of the B-box zinc finger family from A. thaliana and contains a single conserved Zn(2+)-binding B-box domain at the N terminus. Although the B-box domain is predicted to be involved in protein-protein interactions, the mechanism of interaction is poorly understood. Here, we provide in vitro and in vivo evidence demonstrating the physical and functional interactions of AtBBX32 with another B-box protein, soybean BBX62 (GmBBX62). Deletion analysis and characterization of the purified B-box domain indicate that the N-terminal B-box region of AtBBX32 interacts with GmBBX62. Computational modeling and site-directed mutagenesis of the AtBBX32 B-box region identified specific residues as critical for mediating the interaction between AtBBX32 and GmBBX62. This study defines the plant B-box as a protein interaction domain and offers novel insight into its role in mediating specific protein-protein interactions between different plant B-box proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3438981PMC
http://dx.doi.org/10.1074/jbc.M112.346940DOI Listing

Publication Analysis

Top Keywords

b-box domain
16
b-box
10
n-terminal b-box
8
bbx32 protein
8
protein interaction
8
soybean bbx62
8
protein-protein interactions
8
atbbx32 b-box
8
b-box protein
8
b-box region
8

Similar Publications

scTRIM44 Positively Regulated Siniperca Chuatsi Rhabdovirus Through RIG-I- and MDA5-Mediated Interferon Signaling.

Viruses

December 2024

Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.

Tripartite Motif-Containing 44 (TRIM44) is responsible for cancers, neurodegenerative diseases, and viral infections. However, the role of TRIM44 (scTRIM44) during viral infection remains unclear. In the present study, we analyzed the molecular characteristics of scTRIM44 and its role in infectious spleen and kidney necrosis virus (ISKNV), largemouth bass virus (LMBV), and Siniperca chuatsi rhabdovirus (SCRV) infection.

View Article and Find Full Text PDF

The Role and Mechanism of TRIM Proteins in Gastric Cancer.

Cells

December 2024

The National Engineering Research Center for Bioengineering Drugs and the Technologies, Jiangxi Provincial Key Laboratory of Bioengineering Drugs, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China.

Tripartite motif (TRIM) family proteins, distinguished by their N-terminal region that includes a Really Interesting New Gene (RING) domain with E3 ligase activity, two B-box domains, and a coiled-coil region, have been recognized as significant contributors in carcinogenesis, primarily via the ubiquitin-proteasome system (UPS) for degrading proteins. Mechanistically, these proteins modulate a variety of signaling pathways, including Wnt/β-catenin, PI3K/AKT, and TGF-β/Smad, contributing to cellular regulation, and also impact cellular activities through non-signaling mechanisms, including modulation of gene transcription, protein degradation, and stability via protein-protein interactions. Currently, growing evidence indicates that TRIM proteins emerge as potential regulators in gastric cancer, exhibiting both tumor-suppressive and oncogenic roles.

View Article and Find Full Text PDF

Characterization of tripartite motif containing 59 (TRIM59) in Epinephelus akaara: Insights into its immune involvement and functional properties in viral pathogenesis, macrophage polarization, and apoptosis regulation.

Fish Shellfish Immunol

December 2024

Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, Republic of Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, Republic of Korea. Electronic address:

The tripartite motif-containing (TRIM) superfamily is the largest family of RING-type E3 ubiquitin ligases that is conserved across the metazoan kingdom. Previous studies in mammals have demonstrated that TRIM59 possesses ubiquitin-protein ligase activity and acts as a negative regulator of NF-κB signaling. However, TRIM59 has rarely been characterized in fish.

View Article and Find Full Text PDF

Ovarian cancer is the most lethal malignancy affecting the female reproductive system. Pharmacological inhibitors targeting CDK4/6 have demonstrated promising efficacy across various cancer types. However, their clinical benefits in ovarian cancer patients fall short of expectations, with only a subset of patients experiencing these advantageous effects.

View Article and Find Full Text PDF

Mechanistic Role of TRIM26 in Viral Infection and Host Defense.

Genes (Basel)

November 2024

Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue Road, Shanghai 200241, China.

(TRIM26) is an E3 ubiquitin ligase and a member of the TRIM family. Similar to other TRIM proteins, TRIM26 consists of three domains, collectively termed RBCC: a Really Interesting New Gene (RING) domain, one B-Box domain, and a C terminal domain consisting of a PRY/SPRY domain. The PRY/SPRY domain exhibits relatively higher conservation compared with the RING and B-Box domains, suggesting potentially similar roles across TRIM26 proteins from various species.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!