Quantitative clinical measurement of heterogeneity in immunohistochemistry staining would be useful in evaluating patient therapeutic response and in identifying underlying issues in histopathology laboratory quality control. A heterogeneity scoring approach (HetMap) was designed to visualize a individual patient's immunohistochemistry heterogeneity in the context of a patient population. HER2 semiquantitative analysis was combined with ecology diversity statistics to evaluate cell-level heterogeneity (consistency of protein expression within neighboring cells in a tumor nest) and tumor-level heterogeneity (differences of protein expression across a tumor as represented by a tissue section). This approach was evaluated on HER2 immunohistochemistry-stained breast cancer samples using 200 specimens across two different laboratories with three pathologists per laboratory, each outlining regions of tumor for scoring by automatic cell-based image analysis. HetMap was evaluated using three different scoring schemes: HER2 scoring according to American Society of Clinical Oncology and College of American Pathologists (ASCO/CAP) guidelines, H-score, and a new continuous HER2 score (HER2(cont)). Two definitions of heterogeneity, cell-level and tumor-level, provided useful independent measures of heterogeneity. Cases where pathologists had disagreement over reads in the area of clinical importance (+1 and +2) had statistically significantly higher levels of tumor-level heterogeneity. Cell-level heterogeneity, reported either as an average or the maximum area of heterogeneity across a slide, had low levels of dependency on the pathologist choice of region, while tumor-level heterogeneity measurements had more dependence on the pathologist choice of regions. HetMap is a measure of heterogeneity, by which pathologists, oncologists, and drug development organizations can view cell-level and tumor-level heterogeneity for a patient for a given marker in the context of an entire patient cohort. Heterogeneity analysis can be used to identify tumors with differing degrees of heterogeneity, or to highlight slides that should be rechecked for QC issues. Tumor heterogeneity plays a significant role in disconcordant reads between pathologists.

Download full-text PDF

Source
http://dx.doi.org/10.1038/labinvest.2012.91DOI Listing

Publication Analysis

Top Keywords

heterogeneity
17
tumor-level heterogeneity
16
tumor heterogeneity
8
immunohistochemistry-stained breast
8
breast cancer
8
cell-level heterogeneity
8
protein expression
8
heterogeneity cell-level
8
cell-level tumor-level
8
pathologist choice
8

Similar Publications

Background: Fasciolosis is a prevalent disease that significantly impairs the health and productivity of cattle and causes significant economic damage. Beyond the individually available studies with varying prevalence rates, there are no pooled national prevalence studies on bovine fasciolosis. Therefore, the current study aims to determine the pooled prevalence and economic significance of fasciolosis among cattle in Ethiopia.

View Article and Find Full Text PDF

Gene Polymorphisms in Greek Primary Breast Cancer Patients.

Front Biosci (Schol Ed)

December 2024

Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia.

Background: Breast cancer is a heterogeneous disease with distinct clinical subtypes, categorized by hormone receptor status, which exhibits different prognoses and requires personalized treatment approaches. These subtypes included luminal A and luminal B, which have different prognoses. Breast cancer development and progression involve many factors, including interferon-gamma ().

View Article and Find Full Text PDF

In this comprehensive review, we delve into the transformative role of artificial intelligence (AI) in refining the application of multi-omics and spatial multi-omics within the realm of diffuse large B-cell lymphoma (DLBCL) research. We scrutinized the current landscape of multi-omics and spatial multi-omics technologies, accentuating their combined potential with AI to provide unparalleled insights into the molecular intricacies and spatial heterogeneity inherent to DLBCL. Despite current progress, we acknowledge the hurdles that impede the full utilization of these technologies, such as the integration and sophisticated analysis of complex datasets, the necessity for standardized protocols, the reproducibility of findings, and the interpretation of their biological significance.

View Article and Find Full Text PDF

Electrochemical Biosensors for Cancer Diagnosis: Multitarget Analysis to Present Molecular Characteristics of Tumor Heterogeneity.

JACS Au

December 2024

Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, China.

Electrochemical biosensors are gaining attention as powerful tools in cancer diagnosis, particularly in liquid biopsy, due to their high efficiency, rapid response, exceptional sensitivity, and specificity. However, the complexity of intra- and intertumor heterogeneity, with variations in genetic and protein expression profiles and epigenetic modifications, makes electrochemical biosensors susceptible to false-positive or false-negative diagnostic outcomes. To address this challenge, there is growing interest in simultaneously analyzing multiple biomarkers to reveal molecular characteristics of tumor heterogeneity for precise cancer diagnosis.

View Article and Find Full Text PDF

Floorplanning with I/O Assignment via Feasibility-Seeking and Superiorization Methods.

IEEE Trans Comput Aided Des Integr Circuits Syst

January 2025

National Key Laboratory for Multimedia Information Processing, School of Computer Science, Peking University, Beijing, China. Dr. Luo is also with the Center for Energy-efficient Computing and Applications, Peking University, Beijing, China.

The feasibility-seeking approach offers a systematic framework for managing and resolving intricate constraints in continuous problems, making it a promising avenue to explore in the context of floorplanning problems with increasingly heterogeneous constraints. The classic legality constraints can be expressed as the union of convex sets. However, conventional projection-based algorithms for feasibility-seeking do not guarantee convergence in such situations, which are also heavily influenced by the initialization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!