Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Dipeptidyl peptidase-IV (DPP-4) inhibitors are now used to improve postprandial glycemic control in type 2 diabetes. However, their effects on hepatic glucose production (HGP) in obesity are not clear. This study was designed to test the hypothesis that gluconeogenesis and HGP can be modulated by DPP-4 inhibitors in obesity.
Methods: Sprague Dawley male rats were divided into four groups, each on a different diet: general rat chow, n = 10 (G); G + sitagliptin, n = 10; high fat chow (obesity), n = 10 (55% fat calories, HFO); HFO + sitagliptin, n = 10. After 10 weeks, the rats were fasted overnight and glucose metabolism was determined using 3-(3)H-glucose and (14)C-glycerol as tracers.
Results: Glycerol rate of appearance (P < 0.00001), plasma glycerol (P < 0.05) and free fatty acid (FFA) (P < 0.05) concentrations, and HGP (P < 0.05) were decreased in HFO + sitagliptin group compared with HFO group, but there was no significant difference between G and G + sitagliptin groups (P > 0.05). Gluconeogenesis in HFO group was five times of that in G rats (P < 0.01), but was significantly declined in HFO + sitagliptin group (P < 0.0001).
Conclusions: Gluconeogenesis and HGP were inhibited by sitagliptin in high fat-induced obese rats due to decreased glycerol availability, which was a result of reduced glycerol release from adipose tissues. The finding suggests that sitagliptin is potentially useful for controlling fasting glucose in obesity, thereby delaying or preventing the development of diabetes.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!