A bio-inspired durable anti-biofilm coating was developed for industrial stainless steel (SS) surfaces. Two polymers inspired from the adhesive and cross-linking properties of mussels were designed and assembled from aqueous solutions onto SS surfaces to afford durable coatings. Trypsin, a commercially available broad spectrum serine protease, was grafted as the final active layer of the coating. Its proteolytic activity after long immersion periods was demonstrated against several substrata, viz. a synthetic molecule, N-α-benzoyl-DL-arginine-p-nitroanilide hydrochloride (BAPNA), a protein, FTC-casein, and Gram-positive biofilm forming bacterium Staphylococcus epidermidis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/08927014.2012.704366 | DOI Listing |
CNS Neurol Disord Drug Targets
January 2025
Biosciences and Bioengineering PhD Program, American University of Sharjah, UAE.
Neurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system.
View Article and Find Full Text PDFBMC Health Serv Res
January 2025
Department of Engineering, University Campus Bio-Medico of Rome, Via Alvaro del Portillo 21, Rome, 00128, Italy.
Background: Oxygen therapy is critical and vital treatment for hypoxemia and respiratory distress, however, access to reliable oxygen systems remains limited in SSA. Despite WHO initiatives that distributed over 30,000 OC oxygen concentrators worldwide, SSA faces significant challenges related to their maintenance and use, due to harsh environmental conditions, technical skill shortages and inadequate infrastructure. This review aims to systematically identify and assess the literature on OC design adaptations, maintenance challenges, and knowledge gaps in SSA, providing actionable recommendations to inform innovative and context-sensitive solutions to improve healthcare delivery in the region.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, China.
Photoelectrochemical (PEC) water splitting offers an ideal strategy for the development of clean and renewable energy. However, its practical implementation is often inhibited by the high recombination rate of photogenerated charge carriers and the instability of photoanodes. Introducing defect engineering (such as oxygen vacancies) and constructing internal electric field-modulated Z-scheme heteronanostructures (HNs) can be considered as effective approaches to overcome these obstacles.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Petroleum and Energy Engineering, The American University in Cairo, New Cairo 11835, Egypt.
As hydraulic fracturing becomes increasingly prevalent in the oil and gas industry, there is a growing need to develop more cost-effective and sustainable technologies, particularly concerning the materials used. Proppants play a vital role in hydraulic fracturing by ensuring that fractures remain conductive and can withstand the pressure exerted by the surrounding strata. One key parameter for evaluating proppants is their compressive strength, especially under harsh environmental conditions.
View Article and Find Full Text PDFGels
January 2025
Polymers and Bioresources Departments, National Institute for Research and Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei nr. 202, Sector 6, 060021 Bucharest, Romania.
Cellulose nanofibers gained increasing interest in the production of medical devices such as mucoadhesive nanohydrogels due to their ability to retain moisture (high hydrophilicity), flexibility, superior porosity and durability, biodegradability, non-toxicity, and biocompatibility. In this work, we aimed to compare the suitability of selected bacterial and vegetal nanocellulose to form hydrogels for biomedical applications. The vegetal and bacterial cellulose nanofibers were synthesized from brewer's spent grains (BSG) and kombucha membranes, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!